The role of root apoplastic transport barriers in salt tolerance of rice (Oryza sativa L.)

被引:0
|
作者
Pannaga Krishnamurthy
Kosala Ranathunge
Rochus Franke
H. S. Prakash
Lukas Schreiber
M. K. Mathew
机构
[1] National Centre for Biological Sciences,Institute of Cellular and Molecular Botany (IZMB)
[2] TIFR,Department of Studies in Applied Botany and Biotechnology
[3] University of Bonn,undefined
[4] University of Mysore,undefined
来源
Planta | 2009年 / 230卷
关键词
Apoplastic barriers; Casparian bands; Endodermis; Exodermis; Rice; Salt tolerance;
D O I
暂无
中图分类号
学科分类号
摘要
Increasing soil salinity reduces crop yields worldwide, with rice being particularly affected. We have examined the correlation between apoplastic barrier formation in roots, Na+ uptake into shoots and plant survival for three rice (Oryza sativa L.) cultivars of varying salt sensitivity: the salt-tolerant Pokkali, moderately tolerant Jaya and sensitive IR20. Rice plants grown hydroponically or in soil for 1 month were subjected to both severe and moderate salinity stress. Apoplastic barriers in roots were visualized using fluorescence microscopy and their chemical composition determined by gas chromatography and mass spectrometry. Na+ content was estimated by flame photometry. Suberization of apoplastic barriers in roots of Pokkali was the most extensive of the three cultivars, while Na+ accumulation in the shoots was the least. Saline stress induced the strengthening of these barriers in both sensitive and tolerant cultivars, with increase in mRNAs encoding suberin biosynthetic enzymes being detectable within 30 min of stress. Enhanced barriers were detected after several days of moderate stress. Overall, more extensive apoplastic barriers in roots correlated with reduced Na+ uptake and enhanced survival when challenged with high salinity.
引用
收藏
页码:119 / 134
页数:15
相关论文
共 50 条
  • [1] The role of root apoplastic transport barriers in salt tolerance of rice (Oryza sativa L.)
    Krishnamurthy, Pannaga
    Ranathunge, Kosala
    Franke, Rochus
    Prakash, H. S.
    Schreiber, Lukas
    Mathew, M. K.
    PLANTA, 2009, 230 (01) : 119 - 134
  • [2] Root apoplastic barriers block Na+ transport to shoots in rice (Oryza sativa L.)
    Krishnamurthy, Pannaga
    Ranathunge, Kosala
    Nayak, Shraddha
    Schreiber, Lukas
    Mathew, M. K.
    JOURNAL OF EXPERIMENTAL BOTANY, 2011, 62 (12) : 4215 - 4228
  • [3] The role of root system traits in the drought tolerance of rice (Oryza sativa L.)
    Abd Allah, A.A.
    Badawy, Shimaa A
    Zayed, B.A.
    El Gohary, A.A.
    World Academy of Science, Engineering and Technology, 2011, 80 : 700 - 704
  • [4] The role of root apoplastic barriers in cadmium translocation and accumulation in cultivars of rice (Oryza sativa L.) with different Cd-accumulating characteristics
    Qi, Xiaoli
    Tam, Nora Fung-yee
    Li, Wai Chin
    Ye, Zhihong
    ENVIRONMENTAL POLLUTION, 2020, 264
  • [5] Identification of salt-tolerance QTL in rice(Oryza sativa L.)
    GONG Jiming HE Ping QIAN Qian SHEN Lishuang
    China National Rice Research Institute
    Science Bulletin, 1999, (01) : 68 - 71
  • [6] Identification of salt-tolerance QTL in rice (Oryza sativa L.)
    Gong, JM
    He, P
    Qian, QA
    Shen, LS
    Zhu, LH
    Chen, SY
    CHINESE SCIENCE BULLETIN, 1999, 44 (01): : 68 - 71
  • [7] Parameters Utilized in Screening for Salt Tolerance in Rice (Oryza Sativa L.).
    Sankar, Deepa P.
    RESEARCH JOURNAL OF PHARMACEUTICAL BIOLOGICAL AND CHEMICAL SCIENCES, 2016, 7 (02): : 430 - 435
  • [8] The Effects of Cation Ratios on Root Lamella Suberization in Rice (Oryza sativa L.) with Contrasting Salt Tolerance
    Momayezi, M. R.
    Zaharah, A. R.
    Hanafi, M. M.
    INTERNATIONAL JOURNAL OF AGRONOMY, 2012, 2012
  • [9] Evaluation of salt tolerance in rice (Oryza sativa L.) under in vitro conditions
    Thamodharan, G.
    Mathankumar, P.
    Veeramani, T.
    CEREAL RESEARCH COMMUNICATIONS, 2024, 52 (03) : 1043 - 1055
  • [10] Inducing salt tolerance in rice (Oryza sativa L.) varieties by gamma radiation
    Ayan, Alp
    Celik, Ozge
    Meric, Sinan
    Atak, Cimen
    JOURNAL OF BIOTECHNOLOGY, 2017, 256 : S103 - S104