Engineering and manipulation of a mevalonate pathway in Escherichia coli for isoprene production

被引:0
|
作者
Chun-Li Liu
Hao-Ran Bi
Zhonghu Bai
Li-Hai Fan
Tian-Wei Tan
机构
[1] Beijing University of Chemical Technology,National Energy R&D Center for Biorefinery, College of Life Science and Technology
[2] Jiangnan University,National Engineering Laboratory for Cereal Fermentation Technology
来源
关键词
Isoprene; Mevalonate pathway; Balanced gene expression;
D O I
暂无
中图分类号
学科分类号
摘要
Isoprene is a useful phytochemical with high commercial values in many industrial applications including synthetic rubber, elastomers, isoprenoid medicines, and fossil fuel. Currently, isoprene is on large scale produced from petrochemical sources. An efficient biological process for isoprene production utilizing renewable feedstocks would be an important direction of research due to the fossil raw material depletion and air pollution. In this study, we introduced the mevalonate (MVA) pathway genes/acetoacetyl-coenzyme A thiolase (mvaE) and MVA synthase (mvaS) from Enterococcus faecalis (E. faecalis); MVA kinase (mvk) derived from Methanosarcina mazei (M. mazei); and phosphomevalonate kinase (pmk), diphosphomevalonate decarboxylase (mvaD), and isopentenyl diphosphate isomerase (idi) from Streptococcus pneumoniae (S. pneumoniae) to accelerate dimethylallyl diphosphate (DMAPP) accumulation in Escherichia coli (E. coli). Together with a codon-optimized isoprene synthase (ispS) from Populus alba (P. alba), E. coli strain succeeded in formation of isoprene. We then manipulated the heterologous MVA pathway for high-level production of isoprene, by controlling the gene expression levels of the MVA pathway genes. We engineered four E. coli strains which showed different gene expression levels and different isoprene productivities, and we also characterized them with quantitative real-time PCR and metabolite analysis. To further improve the isoprene titers and release the toxicity to cells, we developed the extraction fermentation by adding dodecane in cultures. Finally, strain BL2T7P1TrcP harboring balanced gene expression system produced 587 ± 47 mg/L isoprene, with a 5.2-fold titer improvement in comparison with strain BL7CT7P. This work indicated that a balanced metabolic flux played a significant role to improve the isoprene production via MVA pathway.
引用
收藏
页码:239 / 250
页数:11
相关论文
共 50 条
  • [1] Engineering and manipulation of a mevalonate pathway in Escherichia coli for isoprene production
    Liu, Chun-Li
    Bi, Hao-Ran
    Bai, Zhonghu
    Fan, Li-Hai
    Tan, Tian-Wei
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2019, 103 (01) : 239 - 250
  • [2] Metabolic Engineering Mevalonate Pathway Mediated by RNA Scaffolds for Mevalonate and Isoprene Production in Escherichia coli
    Liu, Chun-Li
    Dong, Hong-Gang
    Xue, Kai
    Sun, Li
    Yang, Yankun
    Liu, Xiuxia
    Li, Ye
    Bai, Zhonghu
    Tan, Tian-Wei
    ACS SYNTHETIC BIOLOGY, 2022, 11 (10): : 3305 - 3317
  • [3] Multi-modular engineering for renewable production of isoprene via mevalonate pathway in Escherichia coli
    Liu, C. -L.
    Dong, H. -G.
    Zhan, J.
    Liu, X.
    Yang, Y.
    JOURNAL OF APPLIED MICROBIOLOGY, 2019, 126 (04) : 1128 - 1139
  • [4] Engineering a mevalonate pathway in Escherichia coli for production of terpenoids
    Vincent J J Martin
    Douglas J Pitera
    Sydnor T Withers
    Jack D Newman
    Jay D Keasling
    Nature Biotechnology, 2003, 21 : 796 - 802
  • [5] Engineering a mevalonate pathway in Escherichia coli for production of terpenoids
    Martin, VJJ
    Pitera, DJ
    Withers, ST
    Newman, JD
    Keasling, JD
    NATURE BIOTECHNOLOGY, 2003, 21 (07) : 796 - 802
  • [6] Synergy between methylerythritol phosphate pathway and mevalonate pathway for isoprene production in Escherichia coli
    Yang, Chen
    Gao, Xiang
    Jiang, Yu
    Sun, Bingbing
    Gao, Fang
    Yang, Sheng
    METABOLIC ENGINEERING, 2016, 37 : 79 - 91
  • [7] Isoprene production by Escherichia coli through the exogenous mevalonate pathway with reduced formation of fermentation byproducts
    Kim, Jung-Hun
    Wang, Chonglong
    Jang, Hui-Jung
    Cha, Myeong-Seok
    Park, Ju-Eon
    Jo, Seon-Yeong
    Choi, Eui-Sung
    Kim, Seon-Won
    MICROBIAL CELL FACTORIES, 2016, 15
  • [8] Isoprene production by Escherichia coli through the exogenous mevalonate pathway with reduced formation of fermentation byproducts
    Jung-Hun Kim
    Chonglong Wang
    Hui-Jung Jang
    Myeong-Seok Cha
    Ju-Eon Park
    Seon-Yeong Jo
    Eui-Sung Choi
    Seon-Won Kim
    Microbial Cell Factories, 15
  • [9] Metabolic engineering for the production of isoprene and isopentenol by Escherichia coli
    Meijie Li
    Rui Nian
    Mo Xian
    Haibo Zhang
    Applied Microbiology and Biotechnology, 2018, 102 : 7725 - 7738
  • [10] Metabolic engineering for the production of isoprene and isopentenol by Escherichia coli
    Li, Meijie
    Nian, Rui
    Xian, Mo
    Zhang, Haibo
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2018, 102 (18) : 7725 - 7738