Statistical downscaling for precipitation projections in West Africa

被引:0
|
作者
Andrew Polasky
Jenni L. Evans
Jose D. Fuentes
机构
[1] The Pennsylvania State University,Department of Meteorology and Atmospheric Science
[2] The Pennsylvania State University,Institute for Computational and Data Sciences
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The West Africa region (5∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^\circ$$\end{document} to 20∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^\circ$$\end{document}N and 10∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^\circ$$\end{document}E to 20∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^\circ$$\end{document}W) is particularly vulnerable to climate change due to a combination of unique geographic features, meteorological conditions, and socio-economic factors. Drastic changes in precipitation (e.g., droughts or floods) in the region can have dramatic impacts on rain-fed agriculture, water availability, and disease risks for the region’s population. Quantifying these risks requires localized climate projections at a higher resolution than is generally available from general circulation models. Using self-organizing maps, we produce station-based downscaled precipitation projections for medium and high-emission climate scenarios for this region. Compared to historical observations, the downscaled values are able to match the historical range of the distribution, and recreate the seasonal variability for the inland portions of the region, but struggle with the seasonal cycle along the coast. We find a decrease in the interior Sahel region by an average of 10% by 2100 under the high greenhouse gas-emission scenario of Shared Socioeonomic Pathway 5-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-$$\end{document}8.5. Precipitation decreases in the Sahel are primarily driven by reductions in the number of rainy days during the wet season, rather than by consistent decreases in the magnitude of the precipitation amounts or decreases in the average length of the wet season.
引用
收藏
页码:327 / 347
页数:20
相关论文
共 50 条
  • [1] Statistical downscaling for precipitation projections in West Africa
    Polasky, Andrew
    Evans, Jenni L.
    Fuentes, Jose D.
    [J]. THEORETICAL AND APPLIED CLIMATOLOGY, 2024, 155 (01) : 327 - 347
  • [2] Novel statistical downscaling emulator for precipitation projections using deep Convolutional Autoencoder over Northern Africa
    Babaousmail, Hassen
    Hou, Rongtao
    Gnitou, Gnim Tchalim
    Ayugi, Brian
    [J]. JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2021, 218
  • [3] Climate change projections of temperature and precipitation in Chile based on statistical downscaling
    Daniela Araya-Osses
    Ana Casanueva
    Celián Román-Figueroa
    Juan Manuel Uribe
    Manuel Paneque
    [J]. Climate Dynamics, 2020, 54 : 4309 - 4330
  • [4] Climate change projections of temperature and precipitation in Chile based on statistical downscaling
    Araya-Osses, Daniela
    Casanueva, Ana
    Roman-Figueroa, Celian
    Manuel Uribe, Juan
    Paneque, Manuel
    [J]. CLIMATE DYNAMICS, 2020, 54 (9-10) : 4309 - 4330
  • [5] Consensus between GCM climate change projections with empirical downscaling: Precipitation downscaling over South Africa
    Hewitson, B. C.
    Crane, R. G.
    [J]. INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2006, 26 (10) : 1315 - 1337
  • [6] Statistical downscaling of regional climate model output to achieve projections of precipitation extremes
    Laflamme, Eric M.
    Linder, Ernst
    Pan, Yibin
    [J]. WEATHER AND CLIMATE EXTREMES, 2016, 12 : 15 - 23
  • [7] Reassessing Model Uncertainty for Regional Projections of Precipitation with an Ensemble of Statistical Downscaling Methods
    San-Martin, D.
    Manzanas, R.
    Brands, S.
    Herrera, S.
    Gutierrez, J. M.
    [J]. JOURNAL OF CLIMATE, 2017, 30 (01) : 203 - 223
  • [8] Statistical downscaling of subgridscale precipitation
    Clausen, A
    Roth, R
    [J]. REGIONALIZATION IN HYDROLOGY, 1999, (254): : 79 - 85
  • [9] Future projections of precipitation and temperature extremes at Sohra (Cherrapunji) using Statistical Downscaling Model
    Kalita, Raju
    Kalita, Dipangkar
    Saxena, Atul
    [J]. MAUSAM, 2024, 75 (01): : 181 - 190
  • [10] Statistical downscaling of future temperature and precipitation projections in Iraq under climate change scenarios
    Hashim, Bassim Mohammed
    Alnaemi, Amer Naji Ahmed
    Hussain, Basim A.
    Abduljabbar, Suhair A.
    Doost, Ziaul Haq
    Yaseen, Zaher Mundher
    [J]. PHYSICS AND CHEMISTRY OF THE EARTH, 2024, 135