Infima of d.r.e. degrees

被引:0
|
作者
Jiang Liu
Shenling Wang
Guohua Wu
机构
[1] Nanyang Technological University,Division of Mathematical Sciences, School of Physical and Mathematical Sciences
来源
关键词
Turing degrees; infimum; Ershov hierarchy; 03D25; 03D28;
D O I
暂无
中图分类号
学科分类号
摘要
Lachlan observed that the infimum of two r.e. degrees considered in the r.e. degrees coincides with the one considered in the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta_2^0}$$\end{document} degrees. It is not true anymore for the d.r.e. degrees. Kaddah proved in (Ann Pure Appl Log 62(3):207–263, 1993) that there are d.r.e. degrees a, b, c and a 3-r.e. degree x such that a is the infimum of b, c in the d.r.e. degrees, but not in the 3-r.e. degrees, as a < x < b, c. In this paper, we extend Kaddah’s result by showing that such a structural difference occurs densely in the r.e. degrees. Our result immediately implies that the isolated 3-r.e. degrees are dense in the r.e. degrees, which was first proved by LaForte.
引用
收藏
页码:35 / 49
页数:14
相关论文
共 50 条
  • [1] Infima of d.r.e. degrees
    Liu, Jiang
    Wang, Shenling
    Wu, Guohua
    [J]. ARCHIVE FOR MATHEMATICAL LOGIC, 2010, 49 (01) : 35 - 49
  • [2] Infima of d.r.e. Degrees
    Liu, Jiang
    Wang, Shengling
    Wu, Guohua
    [J]. MATHEMATICAL THEORY AND COMPUTATIONAL PRACTICE, 2009, 5635 : 332 - 341
  • [3] On the r.e. predecessors of d.r.e. degrees
    Shamil Ishmukhametov
    [J]. Archive for Mathematical Logic, 1999, 38 : 373 - 386
  • [4] On the r.e. predecessors of d.r.e. degrees
    Ishmukhametov, S
    [J]. ARCHIVE FOR MATHEMATICAL LOGIC, 1999, 38 (06) : 373 - 386
  • [5] Isolated maximal d.r.e. degrees
    Liu, Yong
    [J]. ANNALS OF PURE AND APPLIED LOGIC, 2019, 170 (04) : 515 - 538
  • [6] Cupping the recursively enumerable degrees by d.r.e. degrees
    Li, AS
    Yi, XD
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1999, 79 : 1 - 21
  • [8] The d.r.e. degrees are not dense (VOL 55, PG 125, 1991)
    Cooper, S. Barry
    Harrington, Leo
    Lachlan, Alistair H.
    Lempp, Steffen
    Soare, Robert I.
    [J]. ANNALS OF PURE AND APPLIED LOGIC, 2017, 168 (12) : 2164 - 2165
  • [9] d.r.e.度中钻石格的嵌入
    蒋志根
    [J]. 中国科学:数学, 1993, (02) : 137 - 143
  • [10] 低R.E度上D.R.E.度的非稠密性
    蒋志根
    [J]. 数学年刊A辑(中文版), 1993, (05) : 501 - 506