On the Ring of Local Unitary Invariants for Mixed X-States of Two Qubits

被引:0
|
作者
Gerdt V. [1 ]
Khvedelidze A. [2 ,3 ,4 ]
Palii Y. [5 ]
机构
[1] Laboratory of Information Technologies, Joint Institute for Nuclear Research, University “Dubna”, Dubna
[2] Institute of Quantum Physics and Engineering Technologies, Georgian Technical University, Tbilisi
[3] A. Razmadze Mathematical Institute, Iv. Javakhishvili Tbilisi State University, Tbilisi
[4] National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow
[5] Institute of Applied Physics, Chisinau
关键词
D O I
10.1007/s10958-017-3409-1
中图分类号
学科分类号
摘要
Entangling properties of a mixed two-qubit system can be described by local homogeneous unitary invariant polynomials in the elements of the density matrix. The structure of the corresponding ring of invariant polynomials for a special subclass of states, the so-called mixed X-states, is established. It is shown that for the X-states there is an injective ring homomorphism of the quotient ring of SU(2)×SU(2)-invariant polynomials modulo its syzygy ideal to the SO(2) × SO(2)-invariant ring freely generated by five homogeneous polynomials of degrees 1, 1, 1, 2, 2. © 2017, Springer Science+Business Media New York.
引用
收藏
页码:238 / 249
页数:11
相关论文
共 50 条
  • [1] Rational local unitary invariants of symmetrically mixed states of two qubits
    Candelori, Luca
    Chernyak, Vladimir Y.
    Klein, John R.
    Rekuski, Nick
    Advances in Applied Mathematics, 2024, 153
  • [2] Rational local unitary invariants of symmetrically mixed states of two qubits
    Candelori, Luca
    Chernyak, Vladimir Y.
    Klein, John R.
    Rekuski, Nick
    ADVANCES IN APPLIED MATHEMATICS, 2024, 153
  • [3] Effective rationality for local unitary invariants of mixed states of two qubits
    Candelori, Luca
    Chernyak, Vladimir Y.
    Klein, John R.
    Rekuski, Nick
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (14)
  • [4] Maximally genuine multipartite entangled mixed X-states of N-qubits
    Mendonca, Paulo E. M. F.
    Rafsanjani, Seyed Mohammad Hashemi
    Galetti, Diogenes
    Marchiolli, Marcelo A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (21)
  • [5] On the algebra of local unitary invariants of pure and mixed quantum states
    Vrana, Peter
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (22)
  • [6] The Spectrum and Separability of Mixed Two-Qubit X-States
    Khvedelidze A.
    Torosyan A.
    Journal of Mathematical Sciences, 2017, 224 (2) : 349 - 359
  • [7] Local Unitary Invariants for Multipartite States
    Ting-Gui Zhang
    Ming-Jing Zhao
    Xianqing Li-Jost
    Shao-Ming Fei
    International Journal of Theoretical Physics, 2013, 52 : 3020 - 3025
  • [8] Local Unitary Invariants of Quantum States
    Meiyu Cui
    Jingmei Chang
    Ming-Jing Zhao
    Xiaofen Huang
    Tinggui Zhang
    International Journal of Theoretical Physics, 2017, 56 : 3579 - 3587
  • [9] Local Unitary Invariants for Multipartite States
    Zhang, Ting-Gui
    Zhao, Ming-Jing
    Li-Jost, Xianqing
    Fei, Shao-Ming
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2013, 52 (09) : 3020 - 3025
  • [10] Local Unitary Invariants of Quantum States
    Cui, Meiyu
    Chang, Jingmei
    Zhao, Ming-Jing
    Huang, Xiaofen
    Zhang, Tinggui
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2017, 56 (11) : 3579 - 3587