Finite phase transitions in countable abelian groups

被引:0
|
作者
Hannah Alpert
机构
[1] University of Chicago,Department of Mathematics
来源
Archiv der Mathematik | 2011年 / 96卷
关键词
20E34; 11B13; 11B75; Additive basis; Phase transition; Transition set;
D O I
暂无
中图分类号
学科分类号
摘要
Let A be an infinite set that generates a group G. The sphere SA(r) is the set of elements of G for which the word length with respect to A is exactly r. We say G admits all finite transitions if for every r ≥ 2 and every finite symmetric subset \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${W \subset G{\setminus}\{e\}}$$\end{document}, there exists an A with SA(r) = W. In this paper we determine which countable abelian groups admit all finite transitions. We also show that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^n}$$\end{document} and the finitary symmetric group on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{N}}$$\end{document} admit all finite transitions.
引用
收藏
相关论文
共 50 条