The heating of substrates beneath basaltic lava flows

被引:0
|
作者
Sophia W. R. Tsang
Jan M. Lindsay
Giovanni Coco
Robert Wysocki
Geoffrey A. Lerner
Erika Rader
Gillian M. Turner
Ben Kennedy
机构
[1] University of Auckland,School of Environment
[2] Syracuse University,School of Art
[3] University of Idaho,Department of Geological Sciences
[4] Formerly Planetary Systems Branch,School of Chemical and Physical Sciences
[5] NASA Ames Research Center,Department of Geological Sciences
[6] Victoria University of Wellington,undefined
[7] University of Canterbury,undefined
来源
Bulletin of Volcanology | 2019年 / 81卷
关键词
Thermal modelling; Lava flow hazard; Palaeomagnetism; Analogue experiment; Pāhoehoe; Infrastructure impact;
D O I
暂无
中图分类号
学科分类号
摘要
As populations around volcanoes grow, the potential for society to be impacted by lava flows is increasing. While lava flows are known to ignite, bulldoze and/or bury structures, little is known about potential impacts to buried infrastructure. We measure temperature profiles below molten rock to constrain a heat transfer model. Thermomagnetic and palaeomagnetic measurements on soil samples from beneath a 2014 Hawaiian lava flow are then used to verify the model. Finally, we illustrate the model’s utility in lava flow hazard assessments by modelling a hypothetical lava flow active for 4 weeks in Auckland (New Zealand). The modelling predicts the upper 1.7 m of dry soil would exceed 100 °C after 1 week, and the upper 3.8 m of soil would exceed 100 °C after 4 weeks. Determining the depth profile of substrate heating has important implications for planning and preparedness (e.g. siting buried infrastructure), volcanic impact and risk assessments, and decision-making before and during lava flow crises (e.g. mitigation measures to be employed).
引用
收藏
相关论文
共 50 条
  • [1] The heating of substrates beneath basaltic lava flows
    Tsang, Sophia W. R.
    Lindsay, Jan M.
    Coco, Giovanni
    Wysocki, Robert
    Lerner, Geoffrey A.
    Rader, Erika
    Turner, Gillian M.
    Kennedy, Ben
    [J]. BULLETIN OF VOLCANOLOGY, 2019, 81 (11)
  • [2] The formation of basaltic lava flows
    Jones, AE
    [J]. JOURNAL OF GEOLOGY, 1937, 45 (08): : 872 - 880
  • [3] THE PHYSICAL BEHAVIOR OF BASALTIC LAVA FLOWS
    WENTWORTH, CK
    [J]. JOURNAL OF GEOLOGY, 1954, 62 (05): : 425 - 438
  • [4] ASPECTS OF THE DYNAMICS OF BASALTIC LAVA FLOWS
    WADGE, G
    [J]. JOURNAL OF THE GEOLOGICAL SOCIETY, 1980, 137 (JUL) : 518 - 518
  • [5] BASALTIC AND COMMON HORNBLENDES IN LAVA FLOWS
    TSENTER, IY
    SOKOLOVA, EP
    KHOTINA, MI
    [J]. DOKLADY AKADEMII NAUK SSSR, 1971, 199 (05): : 1154 - &
  • [6] Reevaluation of vesicle distributions in basaltic lava flows
    Cashman, KV
    Kauahikaua, JP
    [J]. GEOLOGY, 1997, 25 (05) : 419 - 422
  • [7] Clinker formation in basaltic and trachybasaltic lava flows
    Sébastien Loock
    Benjamin van Wyk de Vries
    Jean-Marc Hénot
    [J]. Bulletin of Volcanology, 2010, 72 : 859 - 870
  • [8] Clinker formation in basaltic and trachybasaltic lava flows
    Loock, Sebastien
    de Vries, Benjamin van Wyk
    Henot, Jean-Marc
    [J]. BULLETIN OF VOLCANOLOGY, 2010, 72 (07) : 859 - 870
  • [9] Morphology and dynamics of inflated subaqueous basaltic lava flows
    Deschamps, Anne
    Grigne, Cecile
    Le Saout, Morgane
    Soule, Samuel Adam
    Allemand, Pascal
    Lanoe, Brigitte Van Vliet
    Floc'h, France
    [J]. GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, 2014, 15 (06): : 2128 - 2150
  • [10] Vapor transport of silver and gold in basaltic lava flows
    Li, Peishu
    Boudreau, Alan E.
    [J]. GEOLOGY, 2019, 47 (09) : 877 - 880