Let K, D be centrally symmetric convex bodies in
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb{R}^n .$$\end{document} Let k < n and let dk(K, D) be the smallest Banach–Mazur distance between k-dimensional sections of K and D. Define
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$
\Delta (k,n) = \sup d_k (K,D),
$$\end{document} where the supremum is taken over all n-dimensional convex symmetric bodies K, D. We prove that, for any k < n,
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$
\Delta (k,n) \sim _{{\text{log}}\,n} \left\{ {\begin{array}{*{20}l}
{\sqrt k } & {{\text{if}}\;k \leq n^{2/3} ,} \\
{\frac{{k^2 }}
{n}} & {{\text{if}}\;k > n^{2/3} ,} \\
\end{array} } \right.
$$\end{document} where
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$A \sim _{\log n} B$$\end{document} means that
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$1/(C\log ^a n) \cdot A \leq B \leq (C\log ^a n) \cdot A$$\end{document} for some absolute constants C, a > 0.