Extremal Distances between Sections of Convex Bodies

被引:0
|
作者
M. Rudelson
机构
[1] University of Missouri,Department of Mathematics
来源
关键词
Convex Body; Absolute Constant; Symmetric Convex; Symmetric Body; Convex Symmetric Body;
D O I
暂无
中图分类号
学科分类号
摘要
Let K, D be centrally symmetric convex bodies in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{R}^n .$$\end{document} Let k < n and let dk(K, D) be the smallest Banach–Mazur distance between k-dimensional sections of K and D. Define \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Delta (k,n) = \sup d_k (K,D), $$\end{document} where the supremum is taken over all n-dimensional convex symmetric bodies K, D. We prove that, for any k < n, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Delta (k,n) \sim _{{\text{log}}\,n} \left\{ {\begin{array}{*{20}l} {\sqrt k } & {{\text{if}}\;k \leq n^{2/3} ,} \\ {\frac{{k^2 }} {n}} & {{\text{if}}\;k > n^{2/3} ,} \\ \end{array} } \right. $$\end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A \sim _{\log n} B$$\end{document} means that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/(C\log ^a n) \cdot A \leq B \leq (C\log ^a n) \cdot A$$\end{document} for some absolute constants C, a  > 0.
引用
收藏
页码:1063 / 1088
页数:25
相关论文
共 50 条
  • [1] Extremal distances between sections of convex bodies
    Rudelson, M
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2004, 14 (05) : 1063 - 1088
  • [2] On the extremal distance between two convex bodies
    C. Hugo Jiménez
    Márton Naszódi
    [J]. Israel Journal of Mathematics, 2011, 183 : 103 - 115
  • [3] On the extremal distance between two convex bodies
    Jimenez, C. Hugo
    Naszodi, Marton
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2011, 183 (01) : 103 - 115
  • [4] EXTREMAL LATTICES OF CONVEX BODIES
    SWINNERTONDYER, HPF
    [J]. PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1953, 49 (01): : 161 - 162
  • [5] Stability Result for the Extremal Grunbaum Distance Between Convex Bodies
    Kobos, Tomasz
    [J]. JOURNAL OF CONVEX ANALYSIS, 2019, 26 (04) : 1277 - 1296
  • [6] Sections of convex bodies
    Zhang, GY
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 1996, 118 (02) : 319 - 340
  • [7] SECTIONS OF CONVEX BODIES
    BURTON, GR
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1976, 12 (47): : 331 - 336
  • [8] DISTANCES BETWEEN CLASSICAL POSITIONS OF CENTRALLY SYMMETRIC CONVEX BODIES
    Markessinis, E.
    Valettas, P.
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 2015, 41 (01): : 187 - 211
  • [9] EXTREMAL H-CONVEX BODIES
    BRONSHTEIN, EM
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 1979, 20 (02) : 295 - 297
  • [10] Extremal functions for real convex bodies
    Burns, Daniel M.
    Levenberg, Norman
    Ma'u, Sione
    [J]. ARKIV FOR MATEMATIK, 2015, 53 (02): : 203 - 236