共 50 条
Infrared nano-spectroscopy of ferroelastic domain walls in hybrid improper ferroelectric Ca3Ti2O7
被引:0
|作者:
K. A. Smith
E. A. Nowadnick
S. Fan
O. Khatib
S. J. Lim
B. Gao
N. C. Harms
S. N. Neal
J. K. Kirkland
M. C. Martin
C. J. Won
M. B. Raschke
S.-W. Cheong
C. J. Fennie
G. L. Carr
H. A. Bechtel
J. L. Musfeldt
机构:
[1] University of Tennessee,Department of Chemistry
[2] New Jersey Institute of Technology,Department of Physics
[3] Cornell University,School of Applied and Engineering Physics
[4] University of California,Department of Materials Science and Engineering
[5] Merced,Department of Physics
[6] University of Tennessee,Department of Physics, Department of Chemistry, and JILA
[7] University of Colorado,Advanced Light Source Division
[8] Lawrence Berkeley National Laboratory,Rutgers Center for Emergent Materials
[9] Rutgers University,Department of Physics and Astronomy
[10] Rutgers University,Laboratory for Pohang Emergent Materials, Pohang Accelerator Laboratory and Max Planck POSTECH Center for Complex Phase Materials
[11] Pohang University of Science and Technology,National Synchrotron Light Source II
[12] Brookhaven National Laboratory,undefined
来源:
关键词:
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Ferroic materials are well known to exhibit heterogeneity in the form of domain walls. Understanding the properties of these boundaries is crucial for controlling functionality with external stimuli and for realizing their potential for ultra-low power memory and logic devices as well as novel computing architectures. In this work, we employ synchrotron-based near-field infrared nano-spectroscopy to reveal the vibrational properties of ferroelastic (90∘\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${}^{\circ }$$\end{document} ferroelectric) domain walls in the hybrid improper ferroelectric Ca3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${}_{3}$$\end{document}Ti2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${}_{2}$$\end{document}O7\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${}_{7}$$\end{document}. By locally mapping the Ti-O stretching and Ti-O-Ti bending modes, we reveal how structural order parameters rotate across a wall. Thus, we link observed near-field amplitude changes to underlying structural modulations and test ferroelectric switching models against real space measurements of local structure. This initiative opens the door to broadband infrared nano-imaging of heterogeneity in ferroics.
引用
收藏
相关论文