Rings in which every 2-absorbing primary ideal is primary

被引:0
|
作者
Mohamed Issoual
机构
[1] University S.M. Ben Abdellah,Laboratory of Modeling and Mathematical Structures, Department of Mathematics, Faculty of Science and Technology of Fez
关键词
2-Absorbing primary ideals; Prime ideals; Primary ideals; Semi-primary ideals; 13A15; 13A99;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be a commutative ring with a nonzero identity. Badawi et al. (Bull Korean Math Soc 51(4):1163–1173, 2014) defined the concept of 2-absorbing primary ideal as follows: a proper ideal P of R is said to be a 2-absorbing primary ideal if whenever xyz∈P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$xyz\in P$$\end{document} for some x,y,z∈R,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x,y,z\in R,$$\end{document} then either xy∈P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$xy\in P$$\end{document} or xz∈P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$xz\in \sqrt{P}$$\end{document} or yz∈P.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$yz\in \sqrt{P}.$$\end{document} It is clear that every primary ideal is also a 2-absorbing primary ideal. The author in this paper is to study rings in which every 2-absorbing primary ideal is primary. A ring R is said to be 2-ABP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2-ABP$$\end{document}-ring if every 2-absorbing primary ideal is primary.
引用
收藏
页码:605 / 614
页数:9
相关论文
共 50 条
  • [1] Rings in which every 2-absorbing primary ideal is primary
    Issoual, Mohamed
    [J]. BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2021, 62 (03): : 605 - 614
  • [2] Rings in which every 2-absorbing ideal is prime
    Bennis D.
    Fahid B.
    [J]. Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2018, 59 (2): : 391 - 396
  • [3] Rings over which every semi-primary ideal is 1-absorbing primary
    Almahdi, Fuad Ali Ahmed
    Tamekkante, Mohammed
    Mamouni, Abdellah
    [J]. COMMUNICATIONS IN ALGEBRA, 2020, 48 (09) : 3838 - 3845
  • [4] ON 2-ABSORBING PRIMARY IDEALS IN COMMUTATIVE RINGS
    Badawi, Ayman
    Tekir, Unsal
    Yetkin, Ece
    [J]. BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (04) : 1163 - 1173
  • [5] Properties of φ-δ-primary and 2-absorbing δ-primary ideals of commutative rings
    Jaber, Ameer
    [J]. ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2020, 13 (01)
  • [6] On 2-Absorbing Primary Fuzzy Ideals of Commutative Rings
    Sonmez, Deniz
    Yesilot, Gursel
    Onar, Serkan
    Ersoy, Bayram Ali
    Davvaz, Bijan
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2017, 2017
  • [7] ON ALMOST 2-ABSORBING PRIMARY IDEALS IN COMMUTATIVE RINGS
    Bataineh, Malik
    Al-Nuserat, Obaydah
    [J]. JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2016, 38 (02): : 109 - 119
  • [8] On weakly 2-absorbing δ-primary ideals of commutative rings
    Badawi, Ayman
    Fahid, Brahim
    [J]. GEORGIAN MATHEMATICAL JOURNAL, 2020, 27 (04) : 503 - 516
  • [9] A Study on Fuzzy 2-absorbing Primary Γ-ideals in Γ-rings
    Onar, Serkan
    Sonmeza, Deniz
    Ersoy, Bayram Ali
    Yesilot, Gursel
    Hila, Kostaq
    [J]. FILOMAT, 2017, 31 (18) : 5753 - 5767
  • [10] ON WEAKLY 2-ABSORBING PRIMARY IDEALS OF COMMUTATIVE RINGS
    Badawi, Ayman
    Tekir, Unsal
    Yetkin, Ece
    [J]. JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2015, 52 (01) : 97 - 111