In this work, using the weighted symmetric functions σk∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\sigma _{k}^{\infty }$$\end{document} and the weighted Newton transformations Tk∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$T_{k}^{\infty }$$\end{document} introduced by Case (Alias et al. Proc Edinb Math Soc 46(02):465–488, 2003), we derive some generalized integral formulae for close hypersurfaces in weighted manifolds. We also give some examples and applications of these formulae.
机构:
Natl Cheng Kung Univ, Dept Math, Tainan 701, TaiwanNatl Cheng Kung Univ, Dept Math, Tainan 701, Taiwan
Kwong, Kwok-Kun
Lee, Hojoo
论文数: 0引用数: 0
h-index: 0
机构:
Korea Inst Adv Study, Ctr Math Challenges, Seoul 02455, South Korea
Seoul Natl Univ, Dept Math Sci, Gwan Ak Ro 1, Seoul 08826, South KoreaNatl Cheng Kung Univ, Dept Math, Tainan 701, Taiwan
Lee, Hojoo
Pyo, Juncheol
论文数: 0引用数: 0
h-index: 0
机构:
Univ Busan, Dept Math, Busan 46241, South KoreaNatl Cheng Kung Univ, Dept Math, Tainan 701, Taiwan
机构:
Columbia Univ, Dept Math, New York, NY 10027 USAColumbia Univ, Dept Math, New York, NY 10027 USA
Wang, Mu-Tao
Wang, Ye-Kai
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Dept Math, New York, NY 10027 USA
Natl Cheng Kung Univ, Dept Math, Tainan 701, TaiwanColumbia Univ, Dept Math, New York, NY 10027 USA
Wang, Ye-Kai
Zhang, Xiangwen
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Dept Math, New York, NY 10027 USA
Univ Calif Irvine, Dept Math, Irvine, CA 92697 USAColumbia Univ, Dept Math, New York, NY 10027 USA