Singular Continuous Spectrum for Singular Potentials

被引:0
|
作者
Svetlana Jitomirskaya
Fan Yang
机构
[1] University of California,
[2] Ocean University of China,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We prove that Schrödinger operators with meromorphic potentials (Hα,θu)n=un+1+un-1+g(θ+nα)f(θ+nα)un\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(H_{\alpha,\theta}u)_n=u_{n+1}+u_{n-1}+ \frac{g(\theta+n\alpha)}{f(\theta+n\alpha)} u_n}$$\end{document} have purely singular continuous spectrum on the set {E:L(E)<δ(α,θ)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\{E: L(E) < \delta{(\alpha, \theta)}\}}$$\end{document}, where δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\delta}$$\end{document} is an explicit function and L is the Lyapunov exponent. This extends results of Jitomirskaya and Liu (Arithmetic spectral transitions for the Maryland model. CPAM, to appear) for the Maryland model and of Avila,You and Zhou (Sharp Phase transitions for the almost Mathieu operator. Preprint, 2015) for the almost Mathieu operator to the general family of meromorphic potentials.
引用
收藏
页码:1127 / 1135
页数:8
相关论文
共 50 条