We prove that Schrödinger operators with meromorphic potentials (Hα,θu)n=un+1+un-1+g(θ+nα)f(θ+nα)un\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${(H_{\alpha,\theta}u)_n=u_{n+1}+u_{n-1}+ \frac{g(\theta+n\alpha)}{f(\theta+n\alpha)} u_n}$$\end{document} have purely singular continuous spectrum on the set {E:L(E)<δ(α,θ)}\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\{E: L(E) < \delta{(\alpha, \theta)}\}}$$\end{document}, where δ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\delta}$$\end{document} is an explicit function and L is the Lyapunov exponent. This extends results of Jitomirskaya and Liu (Arithmetic spectral transitions for the Maryland model. CPAM, to appear) for the Maryland model and of Avila,You and Zhou (Sharp Phase transitions
for the almost Mathieu operator. Preprint, 2015) for the almost Mathieu operator to the general family of meromorphic potentials.