A sparse approximation for fractional Fourier transform

被引:0
|
作者
Yang, Fang [1 ,2 ]
Chen, Jiecheng [1 ]
Qian, Tao [3 ]
Zhao, Jiman [4 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua, Peoples R China
[2] Wenzhou Polytech, Sch Gen Educ, Wenzhou, Peoples R China
[3] Macau Univ Sci & Technol, Macau Ctr Math Sci, Macau, Peoples R China
[4] Beijing Normal Univ, Sch Math Sci, Inst Math & Math Educ, Key Lab Math & Complex Syst,Minist Educ, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional Fourier transform; Sparse representation; Analytical Hardy space; Paley-Wiener theorem; Adaptive Fourier decomposition; DECOMPOSITION; ALGORITHM; SPACES;
D O I
10.1007/s10444-024-10127-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper promotes a new sparse approximation for fractional Fourier transform, which is based on adaptive Fourier decomposition in Hardy-Hilbert space on the upper half-plane. Under this methodology, the local polynomial Fourier transform characterization of Hardy space is established, which is an analog of the Paley-Wiener theorem. Meanwhile, a sparse fractional Fourier series for chirp L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ L<^>2 $$\end{document} function is proposed, which is based on adaptive Fourier decomposition in Hardy-Hilbert space on the unit disk. Besides the establishment of the theoretical foundation, the proposed approximation provides a sparse solution for a forced Schro<spacing diaeresis>\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ddot{\textrm{o}}$$\end{document}dinger equations with a harmonic oscillator.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Sparse Discrete Fractional Fourier Transform and Its Applications
    Liu, Shengheng
    Shan, Tao
    Tao, Ran
    Zhang, Yimin D.
    Zhang, Guo
    Zhang, Feng
    Wang, Yue
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (24) : 6582 - 6595
  • [2] Two‐dimensional sparse fractional Fourier transform and its applications
    Wei, Deyun
    Yang, Jun
    Signal Processing, 2022, 201
  • [3] Optimized sparse fractional Fourier transform: Principle and performance analysis
    Zhang, Hongchi
    Shan, Tao
    Liu, Shengheng
    Tao, Ran
    SIGNAL PROCESSING, 2020, 174
  • [4] The minimality of mean square error in chirp approximation using fractional fourier series and fractional fourier transform
    Bafakeeh, Omar T.
    Yasir, Muhammad
    Raza, Ali
    Khan, Sami Ullah
    Kumar, R. Naveen
    Khan, M. Ijaz
    Almaleki, Deyab A.
    Ben Khedher, Nidhal
    Eldin, Sayed M.
    Galal, Ahmed M.
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [5] The minimality of mean square error in chirp approximation using fractional fourier series and fractional fourier transform
    Omar T. Bafakeeh
    Muhammad Yasir
    Ali Raza
    Sami Ullah Khan
    R. Naveen Kumar
    M. Ijaz Khan
    Deyab A. Almaleki
    Nidhal Ben Khedher
    Sayed M. Eldin
    Ahmed M. Galal
    Scientific Reports, 12
  • [6] Two-dimensional sparse fractional Fourier transform and its applications
    Wei, Deyun
    Yang, Jun
    SIGNAL PROCESSING, 2022, 201
  • [7] Free-space Fresnel diffraction for the approximation of fractional Fourier transform
    Chung J. Kuo
    Ni Y. Chang
    Yuan Luo
    Optical and Quantum Electronics, 2002, 34 : 369 - 376
  • [8] Free-space Fresnel diffraction for the approximation of fractional Fourier transform
    Kuo, CJ
    Chang, NY
    Luo, Y
    OPTICAL AND QUANTUM ELECTRONICS, 2002, 34 (04) : 369 - 376
  • [9] Neural Network Approximation of Graph Fourier Transform for Sparse Sampling of Networked Dynamics
    Pagani, Alessio
    Wei, Zhuangkun
    Silva, Ricardo
    Guo, Weisi
    ACM TRANSACTIONS ON INTERNET TECHNOLOGY, 2022, 22 (01)
  • [10] Sparse Fractional Fourier Transform and Its Applications in Radar Moving Target Detection
    Yu, Xiaohan
    Chen, Xiaolong
    Huang, Yong
    Guan, Jian
    2018 INTERNATIONAL CONFERENCE ON RADAR (RADAR), 2018,