Entropy Numbers of Embeddings of Weighted Besov Spaces

被引:3
|
作者
Thomas Kuhn
Hans-Gerd Leopold
Winfried Sickel
Leszek Skrzypczak
机构
[1] Mathematisches Institut,
[2] Universitat Leipzig,undefined
[3] Augustusplatz 10/11,undefined
[4] D-04109 Leipzig ,undefined
[5] Mathematisches Institut,undefined
[6] Friedrich-Schiller-Universitat Jena,undefined
[7] Ernst-Abbe-Platz 1-2,undefined
[8] D-07743 Jena,undefined
[9] Faculty of Mathematics and Computer Science,undefined
[10] Adam Mickiewicz University,undefined
[11] Ul. Umultowska 87,undefined
[12] Pl-61-614 Poznan,undefined
来源
关键词
Weighted Besov spaces; Smooth weights; Continuous and compact embeddings; Entropy numbers;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the asymptotic behavior of the entropy numbers of the compact embedding $$ B^{s_1}_{p_1,q_1} \!\!(\mbox{\footnotesize\bf R}^d, \alpha) \hookrightarrow B^{s_2}_{p_2,q_2} \!\!({\xxR}). $$ Here $B^s_{p,q} \!({\mbox{\footnotesize\bf R}^d}, \alpha)$ denotes a weighted Besov space, where the weight is given by $w_\alpha (x) = (1+| x |^2)^{\alpha/2}$, and $B^{s_2}_{p_2,q_2} \!({\mbox{\footnotesize\bf R}^d})$ denotes the unweighted Besov space, respectively. We shall concentrate on the so-called limiting situation given by the following constellation of parameters: $s_2 < s_1$, $0 < p_1,p_2 \le \infty$, and $$ \alpha = s_1 - \frac{d}{p_1} - s_2 + \frac{d}{p_2} > d \, \max \Big(0, \frac{1}{p_2}-\frac{1}{p_1}\Big). $$ In almost all cases we give a sharp two-sided estimate.
引用
收藏
页码:61 / 77
页数:16
相关论文
共 50 条