The Spectral Density Function of the Renormalized Bochner Laplacian on a Symplectic Manifold

被引:0
|
作者
Kordyukov Y.A. [1 ,2 ]
机构
[1] Institute of Mathematics, UFRC RAS, 112, Chernyshevskii St., Ufa
[2] Novosibirsk State University, 1, Pirogova St., Novosibirsk
关键词
D O I
10.1007/s10958-020-05123-2
中图分类号
学科分类号
摘要
We consider the renormalized Bochner Laplacian acting on tensor powers of a positive line bundle on a compact symplectic manifold. We derive an explicit local formula for the spectral density function in terms of coefficients of the Riemannian metric and symplectic form. © 2020, Springer Science+Business Media, LLC, part of Springer Nature.
引用
收藏
页码:696 / 712
页数:16
相关论文
共 50 条
  • [1] On the spectral density function of the Laplacian of a graph
    Koch, Herbert
    Lueck, Wolfgang
    [J]. EXPOSITIONES MATHEMATICAE, 2014, 32 (02) : 178 - 189
  • [2] Berezin–Toeplitz Quantization for Eigenstates of the Bochner Laplacian on Symplectic Manifolds
    Louis Ioos
    Wen Lu
    Xiaonan Ma
    George Marinescu
    [J]. The Journal of Geometric Analysis, 2020, 30 : 2615 - 2646
  • [3] Berezin-Toeplitz Quantization for Eigenstates of the Bochner Laplacian on Symplectic Manifolds
    Ioos, Louis
    Lu, Wen
    Ma, Xiaonan
    Marinescu, George
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (03) : 2615 - 2646
  • [4] A spectral sequence associated with a symplectic manifold
    A. M. Vinogradov
    C. Di Pietro
    [J]. Doklady Mathematics, 2007, 75 : 287 - 289
  • [5] A spectral sequence associated with a symplectic manifold
    Vinogradov, A. M.
    Di Pietro, C.
    [J]. DOKLADY MATHEMATICS, 2007, 75 (02) : 287 - 289
  • [6] SPECTRAL-FUNCTION OF LAPLACIAN OF A COMPACT RIEMANNIAN MANIFOLD WITH NO CONJUGATE POINTS
    BERARD, P
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1976, 283 (02): : 45 - 48
  • [7] Eigenvalues of the Laplacian on a compact manifold with density
    Colbois, Bruno
    El Soufi, Ahmad
    Savo, Alessandro
    [J]. COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2015, 23 (03) : 639 - 670
  • [8] The spectral density function for the Laplacian on high tensor powers of a line bundle
    Borthwick, D
    Uribe, A
    [J]. ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2002, 21 (03) : 269 - 286
  • [9] The Spectral Density Function for the Laplacian on High Tensor Powers of a Line Bundle
    David Borthwick
    Alejandro Uribe
    [J]. Annals of Global Analysis and Geometry, 2002, 21 : 269 - 286
  • [10] The Bochner-type formula and the first eigenvalue of the sub-Laplacian on a contact Riemannian manifold
    Wu, Feifan
    Wang, Wei
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2014, 37 : 66 - 88