Spatial-temporal variations in near-surface soil freeze-thaw cycles in the source region of the Yellow River during the period 2002–2011 based on the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) data

被引:0
|
作者
Rui Wang
Qingke Zhu
Hao Ma
Ning Ai
机构
[1] Beijing Forestry University,School of Soil and Water Conservation
[2] State Forestry Administration,Northwest Institute of Forest Inventory and Planning and Design
[3] Yan’an University,College of Life Science
来源
Journal of Arid Land | 2017年 / 9卷
关键词
Advanced Microwave Scanning Radiometer for the Earth Observing System; air temperature; near-surface soil freeze-thaw cycles; source region of the Yellow River;
D O I
暂无
中图分类号
学科分类号
摘要
Detecting near-surface soil freeze-thaw cycles in high-altitude cold regions is important for understanding the Earth’s surface system, but such studies are rare. In this study, we detected the spatial-temporal variations in near-surface soil freeze-thaw cycles in the source region of the Yellow River (SRYR) during the period 2002–2011 based on data from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E). Moreover, the trends of onset dates and durations of the soil freeze-thaw cycles under different stages were also analyzed. Results showed that the thresholds of daytime and nighttime brightness temperatures of the freeze-thaw algorithm for the SRYR were 257.59 and 261.28 K, respectively. At the spatial scale, the daily frozen surface (DFS) area and the daily surface freeze-thaw cycle surface (DFTS) area decreased by 0.08% and 0.25%, respectively, and the daily thawed surface (DTS) area increased by 0.36%. At the temporal scale, the dates of the onset of thawing and complete thawing advanced by 3.10 (±1.4) and 2.46 (±1.4) days, respectively; and the dates of the onset of freezing and complete freezing were delayed by 0.9 (±1.4) and 1.6 (±1.1) days, respectively. The duration of thawing increased by 0.72 (±0.21) day/a and the duration of freezing decreased by 0.52 (±0.26) day/a. In conclusion, increases in the annual minimum temperature and winter air temperature are the main factors for the advanced thawing and delayed freezing and for the increase in the duration of thawing and the decrease in the duration of freezing in the SRYR.
引用
收藏
页码:850 / 864
页数:14
相关论文
共 3 条