共 50 条
Bootstrapping the minimal 3D SCFT
被引:0
|作者:
Alexander Atanasov
Aaron Hillman
David Poland
机构:
[1] Yale University,Department of Physics
[2] Caltech,Walter Burke Institute for Theoretical Physics
来源:
关键词:
Conformal and W Symmetry;
Conformal Field Theory;
Nonperturbative Effects;
Supersymmetry and Duality;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We study the conformal bootstrap constraints for 3D conformal field theories with a ℤ2 or parity symmetry, assuming a single relevant scalar operator ϵ that is invariant under the symmetry. When there is additionally a single relevant odd scalar σ, we map out the allowed space of dimensions and three-point couplings of such “Ising-like” CFTs. If we allow a second relevant odd scalar σ′, we identify a feature in the allowed space compatible with 3D N\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \mathcal{N} $$\end{document} = 1 superconformal symmetry and conjecture that it corresponds to the minimal N\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \mathcal{N} $$\end{document} = 1 supersymmetric extension of the Ising CFT. This model has appeared in previous numerical bootstrap studies, as well as in proposals for emergent supersymmetry on the boundaries of topological phases of matter. Adding further constraints from 3D N\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \mathcal{N} $$\end{document} =1 superconformal symmetry, we isolate this theory and use the numerical bootstrap to compute the leading scaling dimensions Δσ = Δϵ − 1 = .58444(22) and three-point couplings λσσϵ = 1.0721(2) and λϵϵϵ = 1.67(1). We additionally place bounds on the central charge and use the extremal functional method to estimate the dimensions of the next several operators in the spectrum. Based on our results we observe the possible exact relation λϵϵϵ/λσσϵ = tan(1).
引用
收藏
相关论文