Bootstrapping the minimal 3D SCFT

被引:0
|
作者
Alexander Atanasov
Aaron Hillman
David Poland
机构
[1] Yale University,Department of Physics
[2] Caltech,Walter Burke Institute for Theoretical Physics
关键词
Conformal and W Symmetry; Conformal Field Theory; Nonperturbative Effects; Supersymmetry and Duality;
D O I
暂无
中图分类号
学科分类号
摘要
We study the conformal bootstrap constraints for 3D conformal field theories with a ℤ2 or parity symmetry, assuming a single relevant scalar operator ϵ that is invariant under the symmetry. When there is additionally a single relevant odd scalar σ, we map out the allowed space of dimensions and three-point couplings of such “Ising-like” CFTs. If we allow a second relevant odd scalar σ′, we identify a feature in the allowed space compatible with 3D N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 superconformal symmetry and conjecture that it corresponds to the minimal N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 supersymmetric extension of the Ising CFT. This model has appeared in previous numerical bootstrap studies, as well as in proposals for emergent supersymmetry on the boundaries of topological phases of matter. Adding further constraints from 3D N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} =1 superconformal symmetry, we isolate this theory and use the numerical bootstrap to compute the leading scaling dimensions Δσ = Δϵ − 1 = .58444(22) and three-point couplings λσσϵ = 1.0721(2) and λϵϵϵ = 1.67(1). We additionally place bounds on the central charge and use the extremal functional method to estimate the dimensions of the next several operators in the spectrum. Based on our results we observe the possible exact relation λϵϵϵ/λσσϵ = tan(1).
引用
收藏
相关论文
共 50 条
  • [1] Bootstrapping the minimal 3D SCFT
    Atanasov, Alexander
    Hillman, Aaron
    Poland, David
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2018, (11):
  • [2] Bootstrapping 3D fermions
    Iliesiu, Luca
    Kos, Filip
    Poland, David
    Pufu, Silviu S.
    Simmons-Duffin, David
    Yacoby, Ran
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2016, (03): : 1 - 42
  • [3] Bootstrapping 3D fermions
    Luca Iliesiu
    Filip Kos
    David Poland
    Silviu S. Pufu
    David Simmons-Duffin
    Ran Yacoby
    [J]. Journal of High Energy Physics, 2016
  • [4] 3d TQFT from 6d SCFT
    Yagi, Junya
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2013, (08):
  • [5] 3d TQFT from 6d SCFT
    Junya Yagi
    [J]. Journal of High Energy Physics, 2013
  • [6] Dual boundary conditions in 3d SCFT's
    Dimofte, Tudor
    Gaiotto, Davide
    Paquette, Natalie M.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2018, (05):
  • [7] Dual boundary conditions in 3d SCFT’s
    Tudor Dimofte
    Davide Gaiotto
    Natalie M. Paquette
    [J]. Journal of High Energy Physics, 2018
  • [8] Bootstrapping the 3d Ising twist defect
    Gaiotto, Davide
    Mazac, Dalimil
    Paulos, Miguel F.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2014, (03):
  • [9] Bootstrapping 3D fermions with global symmetries
    Luca Iliesiu
    Filip Kos
    David Poland
    Silviu S. Pufu
    David Simmons-Duffin
    [J]. Journal of High Energy Physics, 2018
  • [10] Bootstrapping the 3d Ising twist defect
    Davide Gaiotto
    Dalimil Mazac
    Miguel F. Paulos
    [J]. Journal of High Energy Physics, 2014