Engineering superconducting qubits to reduce quasiparticles and charge noise

被引:0
|
作者
Xianchuang Pan
Yuxuan Zhou
Haolan Yuan
Lifu Nie
Weiwei Wei
Libo Zhang
Jian Li
Song Liu
Zhi Hao Jiang
Gianluigi Catelani
Ling Hu
Fei Yan
Dapeng Yu
机构
[1] Shenzhen Institute for Quantum Science and Engineering,Department of Physics
[2] Southern University of Science and Technology,undefined
[3] International Quantum Academy,undefined
[4] Guangdong Provincial Key Laboratory of Quantum Science and Engineering,undefined
[5] Southern University of Science and Technology,undefined
[6] Southern University of Science and Technology,undefined
[7] State Key Laboratory of Millimeter Waves,undefined
[8] School of Information Science and Engineering,undefined
[9] Southeast University,undefined
[10] JARA Institute for Quantum Information (PGI-11),undefined
[11] Forschungszentrum Jülich,undefined
[12] Quantum Research Centre,undefined
[13] Technology Innovation Institute,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Identifying, quantifying, and suppressing decoherence mechanisms in qubits are important steps towards the goal of engineering a quantum computer or simulator. Superconducting circuits offer flexibility in qubit design; however, their performance is adversely affected by quasiparticles (broken Cooper pairs). Developing a quasiparticle mitigation strategy compatible with scalable, high-coherence devices is therefore highly desirable. Here we experimentally demonstrate how to control quasiparticle generation by downsizing the qubit, capping it with a metallic cover, and equipping it with suitable quasiparticle traps. Using a flip-chip design, we shape the electromagnetic environment of the qubit above the superconducting gap, inhibiting quasiparticle poisoning. Our findings support the hypothesis that quasiparticle generation is dominated by the breaking of Cooper pairs at the junction, as a result of photon absorption by the antenna-like qubit structure. We achieve record low charge-parity switching rate (<1 Hz). Our aluminium devices also display improved stability with respect to discrete charging events.
引用
收藏
相关论文
共 50 条
  • [1] Engineering superconducting qubits to reduce quasiparticles and charge noise
    Pan, Xianchuang
    Zhou, Yuxuan
    Yuan, Haolan
    Nie, Lifu
    Wei, Weiwei
    Zhang, Libo
    Li, Jian
    Liu, Song
    Jiang, Zhi Hao
    Catelani, Gianluigi
    Hu, Ling
    Yan, Fei
    Yu, Dapeng
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [2] Anomalous charge noise in superconducting qubits
    Christensen, B. G.
    Wilen, C. D.
    Opremcak, A.
    Nelson, J.
    Schlenker, F.
    Zimonick, C. H.
    Faoro, L.
    Ioffe, L. B.
    Rosen, Y. J.
    DuBois, J. L.
    Plourde, B. L. T.
    McDermott, R.
    [J]. PHYSICAL REVIEW B, 2019, 100 (14)
  • [3] Suppressing charge noise decoherence in superconducting charge qubits
    Schreier, J. A.
    Houck, A. A.
    Koch, Jens
    Schuster, D. I.
    Johnson, B. R.
    Chow, J. M.
    Gambetta, J. M.
    Majer, J.
    Frunzio, L.
    Devoret, M. H.
    Girvin, S. M.
    Schoelkopf, R. J.
    [J]. PHYSICAL REVIEW B, 2008, 77 (18)
  • [4] Quasiparticles in Superconducting Qubits with Asymmetric Junctions
    Marchegiani, Giampiero
    Amico, Luigi
    Catelani, Gianluigi
    [J]. PRX QUANTUM, 2022, 3 (04):
  • [5] Correlated charge noise and relaxation errors in superconducting qubits
    Wilen, C. D.
    Abdullah, S.
    Kurinsky, N. A.
    Stanford, C.
    Cardani, L.
    D'Imperio, G.
    Tomei, C.
    Faoro, L.
    Ioffe, L. B.
    Liu, C. H.
    Opremcak, A.
    Christensen, B. G.
    DuBois, J. L.
    McDermott, R.
    [J]. NATURE, 2021, 594 (7863) : 369 - +
  • [6] Correlated charge noise and relaxation errors in superconducting qubits
    C. D. Wilen
    S. Abdullah
    N. A. Kurinsky
    C. Stanford
    L. Cardani
    G. D’Imperio
    C. Tomei
    L. Faoro
    L. B. Ioffe
    C. H. Liu
    A. Opremcak
    B. G. Christensen
    J. L. DuBois
    R. McDermott
    [J]. Nature, 2021, 594 : 369 - 373
  • [7] Rate of tunneling nonequilibrium quasiparticles in superconducting qubits
    Ansari, Mohammad H.
    [J]. SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2015, 28 (04):
  • [8] Circuit QED and engineering charge-based superconducting qubits
    Girvin, S. M.
    Devoret, M. H.
    Schoelkopf, R. J.
    [J]. PHYSICA SCRIPTA, 2009, T137
  • [9] Excitation of Superconducting Qubits from Hot Nonequilibrium Quasiparticles
    Wenner, J.
    Yin, Yi
    Lucero, Erik
    Barends, R.
    Chen, Yu
    Chiaro, B.
    Kelly, J.
    Lenander, M.
    Mariantoni, Matteo
    Megrant, A.
    Neill, C.
    O'Malley, P. J. J.
    Sank, D.
    Vainsencher, A.
    Wang, H.
    White, T. C.
    Cleland, A. N.
    Martinis, John M.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (15)
  • [10] Relaxation and frequency shifts induced by quasiparticles in superconducting qubits
    Catelani, G.
    Schoelkopf, R. J.
    Devoret, M. H.
    Glazman, L. I.
    [J]. PHYSICAL REVIEW B, 2011, 84 (06):