Plasmon-enhanced ZnO nanorod/Au NPs/Cu2O structure solar cells: Effects and limitations

被引:0
|
作者
Il-Han Yoo
Shankara Sharanappa Kalanur
Kiryung Eom
Byungmin Ahn
In Sun Cho
Hak Ki Yu
Hyeongtag Jeon
Hyungtak Seo
机构
[1] Ajou University,Department of Energy Systems Research and Department of Materials Science & Engineering
[2] Hanyang University,Division of Materials Science & Engineering
来源
关键词
Au Plasmon Nanoparticle; LSPR; ZnO/Cu; O Solar Cells; Oxide Solar Cells; Electronic Band Analysis;
D O I
暂无
中图分类号
学科分类号
摘要
Cu-based compounds can be a good candidate for a low cost solar cell material. In particular, CuxO (x : 1–2) has a good visible light absorbing bandgap at 1–2 eV. As for using nanostructures in solar cell applications, metal nanoparticle-induced localized plasmon resonance is a promising way to increase light absorbance, which can help improve the efficiency of solar cells. We fabricated ZnO nanorod/Au nanoparticles/Cu2O nanostructures to study their solar cell performance. ZnO nanorods and Cu2O layer were synthesized by the electrodeposition method. Size-controlled Au nanoparticles were deposited using E-beam evaporator for localized surface plasmon resonance (LSPR) effect. By inserting Au plasmon nanoparticles and annealing Au NPs in solar cells, we could tune the maximum incident photon-to-current efficiency wavelength. However, the potential well formed by Au NP at the ZnO/Cu2O junction leads to charge-trapping, based on the constructed electronic band analysis. LSPR-induced hot carrier generation is proposed to promote carrier transport further in the presence of Au NPs.
引用
收藏
页码:3200 / 3207
页数:7
相关论文
共 50 条
  • [1] Plasmon-enhanced ZnO nanorod/Au NPs/Cu2O structure solar cells: Effects and limitations
    Yoo, Il-Han
    Kalanur, Shankara Sharanappa
    Eom, Kiryung
    Ahn, Byungmin
    Cho, In Sun
    Yu, Hak Ki
    Jeon, Hyeongtag
    Seo, Hyungtak
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2017, 34 (12) : 3200 - 3207
  • [2] Plasmon-enhanced Cu2O photocathodes for solar water splitting
    DuChene, Joseph
    Williams, Benjamin
    Johnston-Peck, Aaron
    Qiu, Jingjing
    Su, Dong
    Stach, Eric
    Wei, Wei David
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [3] Plasmon-Enhanced Photocatalytic Properties of Cu2O Nanowire-Au Nanoparticle Assemblies
    Pan, Yanlin
    Deng, Suzi
    Polavarapu, Lakshminarayana
    Gao, Nengyue
    Yuan, Peiyan
    Sow, Chorng Haur
    Xu, Qing-Hua
    LANGMUIR, 2012, 28 (33) : 12304 - 12310
  • [4] Nondestructive interface construction for CdS-buffered ZnO nanorod/Cu2O composite structure solar cells
    Yang, Tonghui
    Liu, Xiaolan
    Ding, Yanli
    Zhao, Shihua
    Yin, Naiqiang
    JOURNAL OF NANOPARTICLE RESEARCH, 2018, 20 (08)
  • [5] Nondestructive interface construction for CdS-buffered ZnO nanorod/Cu2O composite structure solar cells
    Tonghui Yang
    Xiaolan Liu
    Yanli Ding
    Shihua Zhao
    Naiqiang Yin
    Journal of Nanoparticle Research, 2018, 20
  • [6] Au nanoparticle-decorated TiO2 nanorod array for plasmon-enhanced quantum dot sensitized solar cells
    Gao, Qiqian
    Zhang, Xueyu
    Duan, Lianfeng
    Li, Xuesong
    Lu, Wei
    SUPERLATTICES AND MICROSTRUCTURES, 2019, 129 : 185 - 192
  • [7] Electrodeposited ZnO/Cu2O heterojunction solar cells
    Jeong, S. S.
    Mittiga, A.
    Salza, E.
    Masci, A.
    Passerini, S.
    ELECTROCHIMICA ACTA, 2008, 53 (05) : 2226 - 2231
  • [8] Progress of Cu2O/ZnO oxide heterojunction solar cells
    Chen Xin-Liang
    Chen Li
    Zhou Zhong-Xin
    Zhao Ying
    Zhang Xiao-Dan
    ACTA PHYSICA SINICA, 2018, 67 (11)
  • [9] Minority carrier transport length of electrodeposited Cu2O in ZnO/Cu2O heterojunction solar cells
    Liu, Yingchi
    Turley, Hubert K.
    Tumbleston, John R.
    Samulski, Edward T.
    Lopez, Rene
    APPLIED PHYSICS LETTERS, 2011, 98 (16)
  • [10] Plasmon-enhanced performance of CdS/CdTe solar cells using Au nanoparticles
    Kim, Sangsu
    Suh, Jonghee
    Kim, Taeyueb
    Hong, Jinki
    Cho, Shinhaeng
    OPTICS EXPRESS, 2019, 27 (15): : 22017 - 22024