Quantum synchronizable codes from finite rings

被引:0
|
作者
Hualu Liu
Xiusheng Liu
机构
[1] Hubei University of Technology,School of Science
[2] College of Arts and Science of Hubei Normal University,School of Science and Technology
来源
关键词
Quantum synchronizable codes; Cyclic codes; Dual-containing codes; 81P70; 94B50; 94B15; 94B60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we provide two methods of constructing quantum synchronizable codes from cyclic or constacyclic codes over finite rings. The first one is derived from the Calderbank-Shor-Steane (briefly, CSS) construction applied to dual-containing codes over finite chain rings. The second construction is derived from the CSS construction applied to Gray images of the constacyclic codes over semi-local rings Fp+vFp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_{p}+v{\mathbb {F}}_{p}$$\end{document} with v2=v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v^2=v$$\end{document}. By using two methods, concrete examples are presented to construct new quantum synchronizable codes.
引用
收藏
相关论文
共 50 条
  • [1] Quantum synchronizable codes from finite rings
    Liu, Hualu
    Liu, Xiusheng
    [J]. QUANTUM INFORMATION PROCESSING, 2021, 20 (03)
  • [2] Quantum Synchronizable Codes From Finite Geometries
    Fujiwara, Yuichiro
    Vandendriessche, Peter
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (11) : 7345 - 7354
  • [3] Quantum Synchronizable Codes from Generalized Cyclotomy
    Wang, Xueting
    Yan, Tongjiang
    Wang, Tao
    Sun, Shiwen
    [J]. 2022 10TH INTERNATIONAL WORKSHOP ON SIGNAL DESIGN AND ITS APPLICATIONS IN COMMUNICATIONS (IWSDA), 2022, : 136 - 140
  • [4] Quantum Synchronizable Codes From Quadratic Residue Codes and Their Supercodes
    Xie, Yixuan
    Yuan, Jinhong
    Fujiwara, Yuichiro
    [J]. 2014 IEEE INFORMATION THEORY WORKSHOP (ITW), 2014, : 172 - 176
  • [5] Algebraic quantum synchronizable codes
    K. Guenda
    G. G. La Guardia
    T. A. Gulliver
    [J]. Journal of Applied Mathematics and Computing, 2017, 55 : 393 - 407
  • [6] Algebraic quantum synchronizable codes
    Guenda, K.
    La Guardia, G. G.
    Gulliver, T. A.
    [J]. JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2017, 55 (1-2) : 393 - 407
  • [7] Quantum codes from linear codes over finite chain rings
    Liu, Xiusheng
    Liu, Hualu
    [J]. QUANTUM INFORMATION PROCESSING, 2017, 16 (10)
  • [8] Quantum codes from linear codes over finite chain rings
    Xiusheng Liu
    Hualu Liu
    [J]. Quantum Information Processing, 2017, 16
  • [9] Quantum Synchronizable Codes From the Cyclotomy of Order Four
    Li, Lanqiang
    Zhu, Shixin
    Liu, Li
    [J]. IEEE COMMUNICATIONS LETTERS, 2019, 23 (01) : 12 - 15
  • [10] Two Classes of Quantum Synchronizable Codes
    Li, Zheng
    Zhu, Shixin
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2022, 61 (10)