Manipulation of skyrmion motion by magnetic field gradients

被引:0
|
作者
S. L. Zhang
W. W. Wang
D. M. Burn
H. Peng
H. Berger
A. Bauer
C. Pfleiderer
G. van der Laan
T. Hesjedal
机构
[1] University of Oxford,Department of Physics, Clarendon Laboratory
[2] Ningbo University,Faculty of Science
[3] Diamond Light Source,Magnetic Spectroscopy Group
[4] Ecole Polytechnique Fédérale de Lausanne (EPFL),Crystal Growth Facility
[5] Technische Universität München,Physik Department
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Magnetic skyrmions are particle-like, topologically protected magnetisation entities that are promising candidates as information carriers in racetrack memory. The transport of skyrmions in a shift-register-like fashion is crucial for their embodiment in practical devices. Here, we demonstrate that chiral skyrmions in Cu2OSeO3 can be effectively manipulated under the influence of a magnetic field gradient. In a radial field gradient, skyrmions were found to rotate collectively, following a given velocity–radius relationship. As a result of this relationship, and in competition with the elastic properties of the skyrmion lattice, the rotating ensemble disintegrates into a shell-like structure of discrete circular racetracks. Upon reversing the field direction, the rotation sense reverses. Field gradients therefore offer an effective handle for the fine control of skyrmion motion, which is inherently driven by magnon currents. In this scheme, no local electric currents are needed, thus presenting a different approach to shift-register-type operations based on spin transfer torque.
引用
收藏
相关论文
共 50 条
  • [1] Manipulation of skyrmion motion by magnetic field gradients
    Zhang, S. L.
    Wang, W. W.
    Burn, D. M.
    Peng, H.
    Berger, H.
    Bauer, A.
    Pfleiderer, C.
    van der Laan, G.
    Hesjedal, T.
    [J]. NATURE COMMUNICATIONS, 2018, 9
  • [2] Individual skyrmion manipulation by local magnetic field gradients
    Casiraghi, Arianna
    Corte-Leon, Hector
    Vafaee, Mehran
    Garcia-Sanchez, Felipe
    Durin, Gianfranco
    Pasquale, Massimo
    Jakob, Gerhard
    Klaeui, Mathias
    Kazakova, Olga
    [J]. COMMUNICATIONS PHYSICS, 2019, 2 (1)
  • [3] Individual skyrmion manipulation by local magnetic field gradients
    Arianna Casiraghi
    Héctor Corte-León
    Mehran Vafaee
    Felipe Garcia-Sanchez
    Gianfranco Durin
    Massimo Pasquale
    Gerhard Jakob
    Mathias Kläui
    Olga Kazakova
    [J]. Communications Physics, 2
  • [4] Manipulation of Skyrmion by Magnetic Field Gradients: A Stern-Gerlach-Like Experiment
    Liu, Jiahao
    Song, Chengkun
    Zhao, Le
    Cai, Li
    Feng, Hongmei
    Zhao, Binxuan
    Zhao, Mengqi
    Zhou, Yan
    Fang, Liang
    Jiang, Wanjun
    [J]. NANO LETTERS, 2023, 23 (11) : 4931 - 4937
  • [5] Skyrmion motion in magnetic anisotropy gradients: Acceleration caused by deformation
    de Assis, Ismael Ribeiro
    Mertig, Ingrid
    Goebel, Boerge
    [J]. PHYSICAL REVIEW B, 2023, 108 (14)
  • [6] Skyrmion motion driven by oscillating magnetic field
    Kyoung-Woong Moon
    Duck-Ho Kim
    Soong-Geun Je
    Byong Sun Chun
    Wondong Kim
    Z.Q. Qiu
    Sug-Bong Choe
    Chanyong Hwang
    [J]. Scientific Reports, 6
  • [7] Skyrmion motion driven by oscillating magnetic field
    Moon, Kyoung-Woong
    Kim, Duck-Ho
    Je, Soong-Geun
    Chun, Byong Sun
    Kim, Wondong
    Qiu, Z. Q.
    Choe, Sug-Bong
    Hwang, Chanyong
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [8] Exciton motion in large magnetic field gradients
    Piazza, F
    Christianen, PCM
    Lok, JGS
    Maan, JC
    van der Vleuten, W
    [J]. PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1997, 164 (01): : 591 - 594
  • [9] Exciton motion in large magnetic field gradients
    Univ of Nijmegen, Nijmegen, Netherlands
    [J]. Phys Status Solidi A, 1 (591-594):
  • [10] Manipulation of Skyrmion Motion Dynamics for Logical Device Application Mediated by Inhomogeneous Magnetic Anisotropy
    Lin, Jia-Qiang
    Chen, Ji-Pei
    Tan, Zhen-Yu
    Chen, Yuan
    Chen, Zhi-Feng
    Li, Wen-An
    Gao, Xing-Sen
    Liu, Jun-Ming
    [J]. NANOMATERIALS, 2022, 12 (02)