Seismic evidence for a cold serpentinized mantle wedge beneath Mount St Helens

被引:0
|
作者
S. M. Hansen
B. Schmandt
A. Levander
E. Kiser
J. E. Vidale
G. A. Abers
K. C. Creager
机构
[1] MSCO3-2040,Department of Earth and Planetary Sciences
[2] 1 University of New Mexico,Department of Earth Science
[3] MS-126 Rice University,Department of Earth and Space Sciences
[4] University of Washington,Department of Earth and Atmospheric Sciences
[5] Johnson Hall Rm-070,undefined
[6] Cornell University,undefined
[7] Present address: Department of Geosciences,undefined
[8] The University of Arizona,undefined
[9] 1040 E. 4th Street,undefined
[10] Tucson,undefined
[11] Arizona 85721,undefined
[12] USA,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Mount St Helens is the most active volcano within the Cascade arc; however, its location is unusual because it lies 50 km west of the main axis of arc volcanism. Subduction zone thermal models indicate that the down-going slab is decoupled from the overriding mantle wedge beneath the forearc, resulting in a cold mantle wedge that is unlikely to generate melt. Consequently, the forearc location of Mount St Helens raises questions regarding the extent of the cold mantle wedge and the source region of melts that are responsible for volcanism. Here using, high-resolution active-source seismic data, we show that Mount St Helens sits atop a sharp lateral boundary in Moho reflectivity. Weak-to-absent PmP reflections to the west are attributed to serpentinite in the mantle-wedge, which requires a cold hydrated mantle wedge beneath Mount St Helens (<∼700 °C). These results suggest that the melt source region lies east towards Mount Adams.
引用
收藏
相关论文
共 50 条
  • [1] Seismic evidence for a cold serpentinized mantle wedge beneath Mount St Helens
    Hansen, S. M.
    Schmandt, B.
    Levander, A.
    Kiser, E.
    Vidale, J. E.
    Abers, G. A.
    Creager, K. C.
    [J]. NATURE COMMUNICATIONS, 2016, 7
  • [2] SKS Splitting Beneath Mount St. Helens: Constraints on Subslab Mantle Entrainment
    Eakin, C. M.
    Wirth, E. A.
    Wallace, A.
    Ulberg, C. W.
    Creager, K. C.
    Abers, G. A.
    [J]. GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, 2019, 20 (08) : 4202 - 4217
  • [3] Seismological evidence for the existence of serpentinized wedge mantle
    Kamiya, S
    Kobayashi, Y
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2000, 27 (06) : 819 - 822
  • [4] Seismic attenuation beneath Kanto, Japan: evidence for high attenuation in the serpentinized subducting mantle
    Nakajima, Junichi
    [J]. EARTH PLANETS AND SPACE, 2014, 66
  • [5] Seismic attenuation beneath Kanto, Japan: evidence for high attenuation in the serpentinized subducting mantle
    Junichi Nakajima
    [J]. Earth, Planets and Space, 66
  • [6] EVIDENCE FROM GRAVITY-DATA FOR AN INTRUSIVE COMPLEX BENEATH MOUNT ST-HELENS
    WILLIAMS, DL
    ABRAMS, G
    FINN, C
    DZURISIN, D
    JOHNSON, DJ
    DENLINGER, R
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH AND PLANETS, 1987, 92 (B10): : 10207 - 10222
  • [7] DEEP EARTHQUAKES BENEATH MOUNT ST-HELENS - EVIDENCE FOR MAGMATIC GAS-TRANSPORT
    WEAVER, CS
    ZOLLWEG, JE
    MALONE, SD
    [J]. SCIENCE, 1983, 221 (4618) : 1391 - 1394
  • [8] Distribution of melt beneath Mount St Helens and Mount Adams inferred from magnetotelluric data
    Graham J. Hill
    T. Grant Caldwell
    Wiebke Heise
    Darren G. Chertkoff
    Hugh M. Bibby
    Matt K. Burgess
    James P. Cull
    Ray A. F. Cas
    [J]. Nature Geoscience, 2009, 2 : 785 - 789
  • [9] SEISMIC PRECURSORS TO THE MOUNT ST-HELENS ERUPTIONS IN 1981 AND 1982
    MALONE, SD
    BOYKO, C
    WEAVER, CS
    [J]. SCIENCE, 1983, 221 (4618) : 1376 - 1378
  • [10] Erratum: Distribution of melt beneath Mount St Helens and Mount Adams inferred from magnetotelluric data
    Graham J. Hill
    T. Grant Caldwell
    Wiebke Heise
    Darren G. Chertkoff
    Hugh M. Bibby
    Matt K. Burgess
    James P. Cull
    Ray A. F. Cas
    [J]. Nature Geoscience, 2009, 2 : 897 - 897