We describe the direct integral decomposition of a quasi regular representation of a connected and simply connected nilpotent Lie group G, which is induced from a discrete subgroup Γ. The solution is given explicitly in terms of orbital parameters. That is, the spectrum, multiplicity and spectral measure that constitute the decomposition are described completely in terms of natural objects associated to the co-adjoint orbits of G. We conclude with a study of the multiplicity function in certain cases.