Sufficient Conditions for Sampling and Interpolation on the Sphere

被引:0
|
作者
Jordi Marzo
Bharti Pridhnani
机构
[1] Universitat de Barcelona,Dept. Matemàtica Aplicada i Anàlisi
来源
Constructive Approximation | 2014年 / 40卷
关键词
Marcinkiewicz–Zygmund inequalities; Interpolation; Mesh norm; Separation radius; Laplace–Beltrami operator; Points on the sphere; Primary 65D32; Secondary 33C55; 65T40;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain sufficient conditions for arrays of points, Z={Z(L)}L≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {Z}=\{\mathcal {Z}(L) \}_{L\ge 1}$$\end{document}, on the unit sphere Z(L)⊂Sd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {Z}(L)\subset \mathbb {S}^d$$\end{document}, to be Marcinkiewicz–Zygmund and interpolating arrays for spaces of spherical harmonics. The conditions are in terms of the mesh norm and the separation radius of Z(L)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {Z}(L)$$\end{document}.
引用
收藏
页码:241 / 257
页数:16
相关论文
共 50 条