Non-Colliding Paths in the Honeycomb Dimer Model and the Dyson Process

被引:0
|
作者
Cédric Boutillier
机构
[1] Université Pierre et Marie Curie,Laboratoire de Probabilités et Modèles Aléatoires
[2] Paris VI,undefined
来源
关键词
Tilings; Dimer models; Phase transition; Random matrices; Dyson model;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we describe a natural family of random non-intersecting discrete paths in the dimer model on the honeycomb lattice. We show that when the dimer model is going to freeze, this family of paths, after a proper rescaling, converges to the extended sine process, obtained traditionally as the limit of the Dyson model when the number of particles goes to infinity.
引用
收藏
页码:1117 / 1135
页数:18
相关论文
共 50 条