Global regularity for solutions to Dirichlet problem for discontinuous elliptic systems with nonlinearity q > 1 and with natural growth

被引:0
|
作者
Sofia Giuffrè
Giovanna Idone
机构
[1] University of Reggio Calabria,D.I.M.E.T. Faculty of Engineering
来源
关键词
Nonlinear elliptic systems; Global Hölder regularity; Higher gradient summability; MSC 35J65; MSC 35J55;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we deal with the Hölder regularity up to the boundary of the solutions to a nonhomogeneous Dirichlet problem for second-order discontinuous elliptic systems with nonlinearity q > 1 and with natural growth. The aim of the paper is to clarify that the solutions of the above problem are always global Hölder continuous in the case of the dimension n = q without any kind of regularity assumptions on the coefficients. As a consequence of this sharp result, the singular sets \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega_0 \subset \Omega$$\end{document} , \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma _0 \subset \partial \Omega$$\end{document} are always empty for n = q. Moreover we show that also for 1 < q < 2, but q close enough to 2, the solutions are global Hölder continuous for n = 2.
引用
收藏
页码:99 / 117
页数:18
相关论文
共 50 条