Signed Roman domination in digraphs

被引:0
|
作者
S. M. Sheikholeslami
L. Volkmann
机构
[1] Azarbaijan Shahid Madani University,Department of Mathematics
[2] RWTH Aachen University,Lehrstuhl II für Mathematik
来源
关键词
Digraph; Signed Roman dominating function; Signed Roman domination number; 05C20; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
Let D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D$$\end{document} be a finite and simple digraph with vertex set V(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V(D)$$\end{document} and arc set A(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A(D)$$\end{document}. A signed Roman dominating function (SRDF) on the digraph D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D$$\end{document} is a function f:V(D)→{-1,1,2}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:V(D)\rightarrow \{-1,1,2\}$$\end{document} satisfying the conditions that (i) ∑x∈N-[v]f(x)≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{x\in N^-[v]}f(x)\ge 1$$\end{document} for each v∈V(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v\in V(D)$$\end{document}, where N-[v]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N^-[v]$$\end{document} consists of v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v$$\end{document} and all in-neighbors of v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v$$\end{document}, and (ii) every vertex u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u$$\end{document} for which f(u)=-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(u)=-1$$\end{document} has an in-neighbor v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v$$\end{document} for which f(v)=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(v)=2$$\end{document}. The weight of an SRDF f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document} is w(f)=∑v∈V(D)f(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w(f)=\sum _{v\in V(D)}f(v)$$\end{document}. The signed Roman domination number γsR(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{sR}(D)$$\end{document} of D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D$$\end{document} is the minimum weight of an SRDF on D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D$$\end{document}. In this paper we initiate the study of the signed Roman domination number of digraphs, and we present different bounds on γsR(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{sR}(D)$$\end{document}. In addition, we determine the signed Roman domination number of some classes of digraphs. Some of our results are extensions of well-known properties of the signed Roman domination number γsR(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{sR}(G)$$\end{document} of graphs G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}.
引用
收藏
页码:456 / 467
页数:11
相关论文
共 50 条
  • [1] Signed Roman domination in digraphs
    Sheikholeslami, S. M.
    Volkmann, L.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2015, 30 (03) : 456 - 467
  • [2] Weak Signed Roman Domination in Digraphs
    Volkmann, Lutz
    TAMKANG JOURNAL OF MATHEMATICS, 2021, 52 (04): : 497 - 508
  • [3] SIGNED TOTAL ROMAN DOMINATION IN DIGRAPHS
    Volkmann, Lutz
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2017, 37 (01) : 261 - 272
  • [4] Signed Roman k-domination in Digraphs
    Lutz Volkmann
    Graphs and Combinatorics, 2016, 32 : 1217 - 1227
  • [5] Signed double Roman domination numbers in digraphs
    Amjadi, Jafar
    Pourhosseini, Fatemeh
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2021, 48 (02): : 194 - 205
  • [6] Signed Roman k-domination in Digraphs
    Volkmann, Lutz
    GRAPHS AND COMBINATORICS, 2016, 32 (03) : 1217 - 1227
  • [7] WEAK SIGNED ROMAN k-DOMINATION IN DIGRAPHS
    Volkmann, Lutz
    OPUSCULA MATHEMATICA, 2024, 44 (02) : 285 - 296
  • [8] Twin signed total Roman domination numbers in digraphs
    Amjadi, J.
    Soroudi, M.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2018, 11 (03)
  • [9] SIGNED TOTAL DOUBLE ROMAN DOMINATION NUMBERS IN DIGRAPHS
    Amjadi, J.
    Hosseini, F. Pour
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2022, 12 (01): : 357 - 366
  • [10] Negative Signed Domination in Digraphs
    Li, Wensheng
    MECHATRONIC SYSTEMS AND AUTOMATION SYSTEMS, 2011, 65 : 145 - 147