Feature relevance term variation for multi-label feature selection

被引:0
|
作者
Ping Zhang
Wanfu Gao
机构
[1] JiLin University,College of Computer Science and Technology
[2] Jilin University,Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education
[3] Jilin University,College of Chemistry
来源
Applied Intelligence | 2021年 / 51卷
关键词
Multi-label learning; Multi-label feature selection; Information theory; Double conditional relevance;
D O I
暂无
中图分类号
学科分类号
摘要
Multi-label feature selection is a critical dimension reduction technique in multi-label learning. In conventional multi-label feature selection methods based on information theory, feature relevance is evaluated by mutual information between candidate features and each label. However, previous methods ignore two issues: the influence of the already-selected features on the feature relevance and the influence of the correlations among labels on the feature relevance. To address these two issues, we design a new feature relevance term named Double Conditional Relevance (DCR) that employs two conditional mutual information terms to take the already-selected features and the correlations among labels into account. Finally, a novel multi-label feature selection method combining the new feature relevance term with feature redundancy term is proposed, the proposed method is named Double Conditional Relevance-Multi-label Feature Selection (DCR-MFS). Additionally, an extended method DCR-MFSarg is designed to avoid the shortcoming of the inconsistency of magnitude in DCR-MFS method. The experimental results together with theoretical analysis demonstrate the superiority of the proposed methods.
引用
收藏
页码:5095 / 5110
页数:15
相关论文
共 50 条
  • [1] Feature relevance term variation for multi-label feature selection
    Zhang, Ping
    Gao, Wanfu
    APPLIED INTELLIGENCE, 2021, 51 (07) : 5095 - 5110
  • [2] Label correlations variation for robust multi-label feature selection
    Li, Yonghao
    Hu, Liang
    Gao, Wanfu
    INFORMATION SCIENCES, 2022, 609 : 1075 - 1097
  • [3] Feature relevance and redundancy coefficients for multi-view multi-label feature selection
    Han, Qingqi
    Hu, Liang
    Gao, Wanfu
    INFORMATION SCIENCES, 2024, 652
  • [4] Multi-Label Feature Selection Based on Min-Relevance Label
    Gao, Wanfu
    Pan, Hanlin
    IEEE ACCESS, 2023, 11 : 410 - 420
  • [5] Feature-specific mutual information variation for multi-label feature selection
    Hu, Liang
    Gao, Lingbo
    Li, Yonghao
    Zhang, Ping
    Gao, Wanfu
    INFORMATION SCIENCES, 2022, 593 : 449 - 471
  • [6] Label Construction for Multi-label Feature Selection
    Spolaor, Newton
    Monard, Maria Carolina
    Tsoumakas, Grigorios
    Lee, Huei Diana
    2014 BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS), 2014, : 247 - 252
  • [7] Feature Selection for Multi-Label Learning
    Spolaor, Newton
    Monard, Maria Carolina
    Lee, Huei Diana
    PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI), 2015, : 4401 - 4402
  • [8] ReliefF for Multi-label Feature Selection
    Spolaor, Newton
    Cherman, Everton Alvares
    Monard, Maria Carolina
    Lee, Huei Diana
    2013 BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS), 2013, : 6 - 11
  • [9] Partial Multi-Label Feature Selection
    Wang, Jing
    Li, Peipei
    Yu, Kui
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [10] Multi-Label Causal Feature Selection
    Wu, Xingyu
    Jiang, Bingbing
    Yu, Kui
    Chen, Huanhuan
    Miao, Chunyan
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 6430 - 6437