M-Estimator of the drift coefficients in a spatial linear model

被引:0
|
作者
Ana F. Militino
机构
[1] Universidad PÚblica de Navarra,Departamento de Estadistica e Investigación Operativa
来源
Mathematical Geology | 1997年 / 29卷
关键词
kriging; tessellation; robustness;
D O I
暂无
中图分类号
学科分类号
摘要
Kriging as an interpolation method, uses as predictor a linear function of the observations, minimizing the mean squared prediction error or estimation variance. Under multivariate normality assumptions, the given predictor is the best unbiased predictor, and will be vulnerable to outliers. To overcome this problem, a robust weighted estimator of the drift model coefficients is proposed, where unequally spaced data may be weighted through the tile areas of the Dirichlet tessellation.
引用
收藏
页码:221 / 229
页数:8
相关论文
共 50 条
  • [1] M-estimator of the drift coefficients in a spatial linear model
    Militino, AF
    MATHEMATICAL GEOLOGY, 1997, 29 (02): : 221 - 229
  • [2] The M-estimator for functional linear regression model
    Huang, Lele
    Wang, Huiwen
    Zheng, Andi
    STATISTICS & PROBABILITY LETTERS, 2014, 88 : 165 - 173
  • [3] Efficiency and robustness of a resampling M-estimator in the linear model
    Hu, FF
    JOURNAL OF MULTIVARIATE ANALYSIS, 2001, 78 (02) : 252 - 271
  • [4] M-Estimator of a Generalized Linear Model with Measurement Errors
    Huang, Yujie
    Song, Lixin
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2011, 40 (03) : 532 - 546
  • [5] An M-estimator of spatial tail dependence
    Einmahl, John H. J.
    Kiriliouk, Anna
    Krajina, Andrea
    Segers, Johan
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2016, 78 (01) : 275 - 298
  • [6] Sieve M-estimator for a semi-functional linear model
    Huang LeLe
    Wang HuiWen
    Cui HengJian
    Wang SiYang
    SCIENCE CHINA-MATHEMATICS, 2015, 58 (11) : 2421 - 2434
  • [7] Robust Linearized Ridge M-estimator for Linear Regression Model
    Jadhav, N. H.
    Kashid, D. N.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2016, 45 (03) : 1001 - 1024
  • [8] Sieve M-estimator for a semi-functional linear model
    LeLe Huang
    HuiWen Wang
    HengJian Cui
    SiYang Wang
    Science China Mathematics, 2015, 58 : 2421 - 2434
  • [9] Sieve M-estimator for a semi-functional linear model
    HUANG LeLe
    WANG HuiWen
    CUI HengJian
    WANG SiYang
    ScienceChina(Mathematics), 2015, 58 (11) : 2421 - 2434
  • [10] A modified ridge m-estimator for linear regression model with multicollinearity and outliers
    Ertas, Hasan
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2018, 47 (04) : 1240 - 1250