A Subgradient Method for Multiobjective Optimization on Riemannian Manifolds

被引:0
|
作者
G. C. Bento
J. X. Cruz Neto
机构
[1] Universidade Federal de Goiás,
[2] Universidade Federal Piauí,undefined
关键词
Pareto optimality; Multiobjective optimization; Subgradient method; Quasi-Féjer convergence;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a subgradient-type method for solving nonsmooth multiobjective optimization problems on Riemannian manifolds is proposed and analyzed. This method extends, to the multicriteria case, the classical subgradient method for real-valued minimization proposed by Ferreira and Oliveira (J. Optim. Theory Appl. 97:93–104, 1998). The sequence generated by the method converges to a Pareto optimal point of the problem, provided that the sectional curvature of the manifold is nonnegative and the multicriteria function is convex.
引用
收藏
页码:125 / 137
页数:12
相关论文
共 50 条
  • [1] A Subgradient Method for Multiobjective Optimization on Riemannian Manifolds
    Bento, G. C.
    Cruz Neto, J. X.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 159 (01) : 125 - 137
  • [2] Multiobjective BFGS method for optimization on Riemannian manifolds
    Najafi, Shahabeddin
    Hajarian, Masoud
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2024, 87 (02) : 337 - 354
  • [3] Multiobjective BFGS method for optimization on Riemannian manifolds
    Shahabeddin Najafi
    Masoud Hajarian
    [J]. Computational Optimization and Applications, 2024, 87 (2) : 337 - 354
  • [4] An Incremental Subgradient Method on Riemannian Manifolds
    Zhang, Peng
    Bao, Gejun
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2018, 176 (03) : 711 - 727
  • [5] An Incremental Subgradient Method on Riemannian Manifolds
    Peng Zhang
    Gejun Bao
    [J]. Journal of Optimization Theory and Applications, 2018, 176 : 711 - 727
  • [6] A subgradient method for multiobjective optimization
    J. X. Da Cruz Neto
    G. J. P. Da Silva
    O. P. Ferreira
    J. O. Lopes
    [J]. Computational Optimization and Applications, 2013, 54 : 461 - 472
  • [7] A subgradient method for multiobjective optimization
    Da Cruz Neto, J. X.
    Da Silva, G. J. P.
    Ferreira, O. P.
    Lopes, J. O.
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2013, 54 (03) : 461 - 472
  • [8] Subgradient Method for Convex Feasibility on Riemannian Manifolds
    Bento, Glaydston C.
    Melo, Jefferson G.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2012, 152 (03) : 773 - 785
  • [9] Subgradient Method for Convex Feasibility on Riemannian Manifolds
    Glaydston C. Bento
    Jefferson G. Melo
    [J]. Journal of Optimization Theory and Applications, 2012, 152 : 773 - 785
  • [10] Subgradient Algorithm on Riemannian Manifolds
    O. P. Ferreira
    P. R. Oliveira
    [J]. Journal of Optimization Theory and Applications, 1998, 97 : 93 - 104