Congruences related to the Ramanujan/Watson mock theta functions ω(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega (q)$$\end{document} and ν(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu (q)$$\end{document}

被引:0
|
作者
George E. Andrews
Donny Passary
James A. Sellers
Ae Ja Yee
机构
[1] The Pennsylvania State University,Department of Mathematics
关键词
Partition congruences; Generating function; Mock theta functions; Primary 11P81; 11P83;
D O I
10.1007/s11139-016-9812-2
中图分类号
学科分类号
摘要
Recently, Andrews, Dixit, and Yee introduced partition functions associated with the Ramanujan/Watson mock theta functions ω(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega (q)$$\end{document} and ν(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu (q)$$\end{document}. In this paper, we study arithmetic properties of the partition functions. Based on one of the results of Andrews, Dixit, and Yee, mod 2 congruences are obtained. In addition, infinite families of mod 4 and mod 8 congruences are presented. Lastly, an elementary proof of the first explicit examples of congruences for ω(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega (q)$$\end{document} given by Waldherr is presented.
引用
收藏
页码:347 / 357
页数:10
相关论文
共 50 条