Primordial black holes in nonminimal derivative coupling inflation with quartic potential and reheating consideration

被引:0
|
作者
Soma Heydari
Kayoomars Karami
机构
[1] University of Kurdistan,Department of Physics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the generation of primordial black holes (PBHs) with the aid of gravitationally increased friction mechanism originated from the nonminimal field derivative coupling (NMDC) to gravity framework, with the quartic potential. Applying the coupling parameter as a two-parted function of inflaton field and fine-tuning of five parameter assortments we can acquire ultra slow-roll phase to slow down the inflaton field due to high friction. This enables us to achieve enough enhancement in the amplitude of curvature perturbations power spectra to generate PBHs with different masses. The reheating stage is considered to obtain criteria for PBHs generation during radiation dominated era. We demonstrate that three cases of asteroid mass PBHs (10-12M⊙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{-12}M_{\odot }$$\end{document}, 10-13M⊙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{-13}M_{\odot }$$\end{document}, and 10-15M⊙)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{-15}M_{\odot })$$\end{document} can be very interesting candidates for comprising 100%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$100\%$$\end{document} , 98.3%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$98.3\%$$\end{document} and 99.1%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$99.1\%$$\end{document} of the total dark matter (DM) content of the universe. Moreover, we analyse the production of induced Gravitational Waves (GWs), and illustrate that their spectra of current density parameter (ΩGW0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\Omega _{{\mathrm{GW}}_\mathrm{0}}})$$\end{document} for all parameter Cases foretold by our model have climaxes which cut the sensitivity curves of GWs detectors, ergo the veracity of our outcomes can be tested in light of these detectors. At last, our numerical results exhibit that the spectra of ΩGW0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Omega _{{\mathrm{GW}}_\mathrm{0}}}$$\end{document} behave as a power-law function with respect to frequency, ΩGW0(f)∼(f/fc)n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Omega _{{\mathrm{GW}}_\mathrm{0}}} (f) \sim (f/f_c)^{n} $$\end{document}, in the vicinity of climaxes. Also, in the infrared regime f≪fc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\ll f_{c}$$\end{document}, the power index satisfies the relation n=3-2/ln(fc/f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=3-2/\ln (f_c/f)$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Primordial black holes in nonminimal derivative coupling inflation with quartic potential and reheating consideration
    Heydari, Soma
    Karami, Kayoomars
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2022, 82 (01):
  • [2] Primordial black holes from inflation with nonminimal derivative coupling
    Fu, Chengjie
    Wu, Puxun
    Yu, Hongwei
    [J]. PHYSICAL REVIEW D, 2019, 100 (06)
  • [3] Primordial black holes ensued from exponential potential and coupling parameter in nonminimal derivative inflation model
    Heydari, Soma
    Karami, Kayoomars
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2022, (03):
  • [4] Primordial Black Holes Formation and Secondary Gravitational Waves in Nonminimal Derivative Coupling Inflation
    Teimoori, Zeinab
    Rezazadeh, Kazem
    Karami, Kayoomars
    [J]. ASTROPHYSICAL JOURNAL, 2021, 915 (02):
  • [5] Black holes with nonminimal derivative coupling
    Rinaldi, Massimiliano
    [J]. PHYSICAL REVIEW D, 2012, 86 (08):
  • [6] Primordial black holes from multifield inflation with nonminimal couplings
    Geller, Sarah R.
    Qin, Wenzer
    McDonough, Evan
    Kaiser, David I.
    [J]. PHYSICAL REVIEW D, 2022, 106 (06)
  • [7] Inflaton decay and reheating in nonminimal derivative coupling
    Myung, Yun Soo
    Moon, Taeyoon
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2016, (07):
  • [8] Reheating constraints on an inflation model with nonminimal derivative coupling in the light of Planck 2018 data
    Mirtalebian, F. S.
    Nozari, Kourosh
    Azizi, Tahereh
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2021, 30 (02):
  • [9] Asymmetric reheating by primordial black holes
    Sandick, Pearl
    Haghi, Barmak Shams Es
    Sinha, Kuver
    [J]. PHYSICAL REVIEW D, 2021, 104 (08)
  • [10] Reheating in Runaway Inflation Models via the Evaporation of Mini Primordial Black Holes
    Dalianis, Ioannis
    Kodaxis, George P.
    [J]. GALAXIES, 2022, 10 (01):