Commuting Quasihomogeneous Toeplitz Operators on the Harmonic Bergman Space

被引:1
|
作者
Xing-Tang Dong
Ze-Hua Zhou
机构
[1] Tianjin University,Department of Mathematics
来源
关键词
Toeplitz operators; Harmonic Bergman space; Quasihomogeneous symbols; Primary 47B35;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we obtain a symmetry number for the commutator of quasihomogeneous Toeplitz operators on the harmonic Bergman space. Then we use it to characterize the commuting Toeplitz operators with quasihomogeneous symbols. Also, we show that a Toeplitz operator with an analytic or co-analytic monomial symbol commutes with another Toeplitz operator only in the trivial case.
引用
收藏
页码:1267 / 1285
页数:18
相关论文
共 50 条
  • [1] Commuting Quasihomogeneous Toeplitz Operators on the Harmonic Bergman Space
    Dong, Xing-Tang
    Zhou, Ze-Hua
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2013, 7 (04) : 1267 - 1285
  • [2] Quasihomogeneous Toeplitz operators on the harmonic Bergman space
    Louhichi, Issam
    Zakariasy, Lova
    ARCHIV DER MATHEMATIK, 2012, 98 (01) : 49 - 60
  • [3] Quasihomogeneous Toeplitz operators on the harmonic Bergman space
    Issam Louhichi
    Lova Zakariasy
    Archiv der Mathematik, 2012, 98 : 49 - 60
  • [4] Commuting Toeplitz operators on the harmonic Bergman space
    Choe, BR
    Lee, YJ
    MICHIGAN MATHEMATICAL JOURNAL, 1999, 46 (01) : 163 - 174
  • [5] Product equivalence of quasihomogeneous Toeplitz operators on the harmonic Bergman space
    Dong, Xing-Tang
    Zhou, Ze-Hua
    STUDIA MATHEMATICA, 2013, 219 (02) : 163 - 175
  • [6] QUASIHOMOGENEOUS TOEPLITZ OPERATORS WITH INTEGRABLE SYMBOLS ON THE HARMONIC BERGMAN SPACE
    Dong, Xing-Tang
    Liu, Congwen
    Zhou, Ze-Hua
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2014, 90 (03) : 494 - 503
  • [7] Commuting dual Toeplitz operators on the harmonic Bergman space
    JingYu Yang
    YuFeng Lu
    Science China Mathematics, 2015, 58 : 1461 - 1472
  • [8] Commuting dual Toeplitz operators on the harmonic Bergman space
    Yang JingYu
    Lu YuFeng
    SCIENCE CHINA-MATHEMATICS, 2015, 58 (07) : 1461 - 1472
  • [9] Commuting dual Toeplitz operators on the harmonic Bergman space
    YANG JingYu
    LU YuFeng
    ScienceChina(Mathematics), 2015, 58 (07) : 1461 - 1472
  • [10] COMMUTING AND SEMI-COMMUTING TOEPLITZ OPERATORS ON THE WEIGHTED HARMONIC BERGMAN SPACE
    Kong, Linghui
    Qu, Shuang
    Tong, Shan
    OPERATORS AND MATRICES, 2021, 15 (01): : 163 - 174