Extending the Zolotarev–Frobenius approach to quadratic reciprocity

被引:0
|
作者
Adrian Brunyate
Pete L. Clark
机构
[1] University of Georgia,Department of Mathematics, Boyd Graduate Studies Research Center
来源
The Ramanujan Journal | 2015年 / 37卷
关键词
Quadratic reciprocity; Signature; Jacobi symbol; Zolotarev permutation; Abstract number ring; Finite principal ring; Primary 11A15; 13F05; 13F10;
D O I
暂无
中图分类号
学科分类号
摘要
In 1872, Zolotarev observed that the Legendre symbol ap\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( \frac{a}{p}\right) $$\end{document} is the sign of the permutation of Z/pZ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb Z/p\mathbb Z$$\end{document} induced by multiplication by a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a$$\end{document} and used this to prove the quadratic reciprocity law. We pursue Zolotarev’s formalism in a more general setup, which can be expressed in terms of a Dedekind domain R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document} with finite residue fields or in terms of finite principal commutative rings. In this level of generality we define and compute Zolotarev symbols—by comparison to Jacobi symbols, when the residue rings have odd order—and arrive at Zolotarev reciprocity, a sort of “potential quadratic reciprocity law”. To realize this potential one must compute the sign of a certain permutation. When R=Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R = \mathbb Z$$\end{document}, this was done by Zolotarev. When R=Fq[t]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R = \mathbb F_q[t]$$\end{document} for an odd prime power q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}, we compute the sign of this permutation and obtain a new proof of the quadratic reciprocity law of Dedekind and Artin.
引用
收藏
页码:25 / 50
页数:25
相关论文
共 50 条