Lithium anode interlayer design for all-solid-state lithium-metal batteries

被引:0
|
作者
Zeyi Wang
Jiale Xia
Xiao Ji
Yijie Liu
Jiaxun Zhang
Xinzi He
Weiran Zhang
Hongli Wan
Chunsheng Wang
机构
[1] University of Maryland,Department of Chemical and Biomolecular Engineering
[2] University of Maryland,Department of Materials Science and Engineering
来源
Nature Energy | 2024年 / 9卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
All-solid-state lithium-metal batteries (ASSLBs) have attracted intense interest due to their high energy density and high safety. However, Li dendrite growth and high interface resistance remain challenging due to insufficient understanding of the mechanism. Here we develop two types of porous lithiophobic interlayer (Li7N2I–carbon nanotube and Li7N2I–Mg) to enable Li to plate at the Li/interlayer interface and reversibly penetrate into the porous interlayer. The experimental and simulation results reveal that a balance of lithiophobicity, electronic and ionic conductivities and interlayer’s porosity are the key enablers for stable Li plating/stripping at a high capacity. A fine-tuned Li7N2I–carbon nanotube interlayer enables Li/LNI/Li symmetric cell to achieve a high critical current density of 4.0 mA cm−2 at 4.0 mAh cm−2 at 25 °C; the Li7N2I–Mg interlayer enables a Li4SiO4@LiNi0.8Mn0.1Co0.1O2/Li6PS5Cl/20 µm-Li full cell to achieve an areal capacity of 2.2 mAh cm−2, maintaining 82.4% capacity retention after 350 cycles at 60 °C at a rate of 0.5 C. The interlayer design principle opens opportunities to develop safe and high energy ASSLBs.
引用
收藏
页码:251 / 262
页数:11
相关论文
共 50 条
  • [1] Lithium anode interlayer design for all-solid-state lithium-metal batteries
    Wang, Zeyi
    Xia, Jiale
    Ji, Xiao
    Liu, Yijie
    Zhang, Jiaxun
    He, Xinzi
    Zhang, Weiran
    Wan, Hongli
    Wang, Chunsheng
    [J]. NATURE ENERGY, 2024, 9 (03) : 251 - 262
  • [2] Anode interface in all-solid-state lithium-metal batteries: Challenges and strategies
    Yu Qi-Peng
    Liu Qi
    Wang Zi-Qiang
    Li Bao-Hua
    [J]. ACTA PHYSICA SINICA, 2020, 69 (22)
  • [3] Controlling the Lithium-Metal Growth To Enable Low-Lithium-Metal-Excess All-Solid-State Lithium-Metal Batteries
    Liu, Ming
    Wang, Chao
    Cheng, Zhu
    Ganapathy, Swapna
    Haverkate, Lucas A.
    Unnikrishnan, Sandeep
    Wagemaker, Marnix
    [J]. ACS MATERIALS LETTERS, 2020, 2 (07): : 665 - 670
  • [4] Effects of solid electrolyte particle size and silver-carbon interlayer on lithium deposition in all-solid-state lithium-metal batteries
    Takase, Y.
    Kodama, M.
    Iwamura, R.
    Kawakami, H.
    Aotani, K.
    Aihara, Y.
    Hirai, S.
    [J]. ELECTROCHIMICA ACTA, 2024, 498
  • [5] Practical Challenges and Future Perspectives of All-Solid-State Lithium-Metal Batteries
    Xia, Shuixin
    Wu, Xinsheng
    Zhang, Zhichu
    Cui, Yi
    Liu, Wei
    [J]. CHEM, 2019, 5 (04): : 753 - 785
  • [6] A Lithium-free Anode Toward Stable All-solid-state Lithium Metal Batteries
    Tan, Lei
    Wang, Jiexi
    [J]. Cailiao Daobao/Materials Reports, 2020, 34 (13): : 13001 - 13002
  • [7] A lithium-free anode toward stable all-solid-state lithium metal batteries
    谭磊
    王接喜
    [J]. 材料导报, 2020, 34 (13) : 13001 - 13002
  • [8] Protecting lithium metal anode in all-solid-state batteries with a composite electrolyte
    Wen-Qing Wei
    Bing-Qiang Liu
    Yi-Qiang Gan
    Hai-Jian Ma
    Da-Wei Cui
    [J]. Rare Metals, 2021, 40 (02) : 409 - 416
  • [9] Protecting lithium metal anode in all-solid-state batteries with a composite electrolyte
    Wen-Qing Wei
    Bing-Qiang Liu
    Yi-Qiang Gan
    Hai-Jian Ma
    Da-Wei Cui
    [J]. Rare Metals, 2021, 40 : 409 - 416
  • [10] Protecting lithium metal anode in all-solid-state batteries with a composite electrolyte
    Wei, Wen-Qing
    Liu, Bing-Qiang
    Gan, Yi-Qiang
    Ma, Hai-Jian
    Cui, Da-Wei
    [J]. RARE METALS, 2021, 40 (02) : 409 - 416