Bohr radius for certain classes of close-to-convex harmonic mappings

被引:0
|
作者
Molla Basir Ahamed
Vasudevarao Allu
Himadri Halder
机构
[1] Indian Institute of Technology Bhubaneswar,School of Basic Sciences
来源
关键词
Analytic; Univalent; Harmonic functions; Starlike; Convex; Close-to-convex functions; Coefficient estimate; Growth theorem; Bohr radius; Primary 30C45; 30C50; 30C80;
D O I
暂无
中图分类号
学科分类号
摘要
Let H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal {H}} $$\end{document} be the class of harmonic functions f=h+g¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ f=h+{\bar{g}} $$\end{document} in the unit disk D:={z∈C:|z|<1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {D}}:=\{z\in {\mathbb {C}} : |z|<1\}$$\end{document}, where h and g are analytic in D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathbb {D}} $$\end{document}. Let PH0(α)={f=h+g¯∈H:Re(h′(z)-α)>|g′(z)|with0≤α<1,g′(0)=0,z∈D}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {P}}_{{\mathcal {H}}}^{0}(\alpha )=\{f=h+{\overline{g}} \in {\mathcal {H}} : {{\text {Re}}\,}(h^{\prime }(z)-\alpha )>|g^{\prime }(z)|\; \text{ with }\; 0\le \alpha <1,\; g^{\prime }(0)=0,\; z \in {\mathbb {D}}\} $$\end{document} be the class of close-to-convex mappings defined by Li and Ponnusamy (Nonlinear Anal 89:276–283, 2013). In this paper, we obtain the sharp Bohr–Rogosinski radius, improved Bohr radius and refined Bohr radius for the class PH0(α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal {P}}_{{\mathcal {H}}}^{0}(\alpha ) $$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Bohr radius for certain classes of close-to-convex harmonic mappings
    Ahamed, Molla Basir
    Allu, Vasudevarao
    Halder, Himadri
    [J]. ANALYSIS AND MATHEMATICAL PHYSICS, 2021, 11 (03)
  • [2] Bohr-Rogosinski radius for a certain class of close-to-convex harmonic mappings
    Ahamed, Molla Basir
    Allu, Vasudevarao
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2023, 66 (03): : 1014 - 1029
  • [3] The Bohr-Rogosinski Radius for a Certain Class of Close-to-Convex Harmonic Mappings
    Ahamed, Molla Basir
    [J]. COMPUTATIONAL METHODS AND FUNCTION THEORY, 2022,
  • [4] Some properties of certain close-to-convex harmonic mappings
    Wang, Xiao-Yuan
    Wang, Zhi-Gang
    Fan, Jin-Hua
    Hu, Zhen-Yong
    [J]. ANALYSIS AND MATHEMATICAL PHYSICS, 2022, 12 (01)
  • [5] Some properties of certain close-to-convex harmonic mappings
    Xiao-Yuan Wang
    Zhi-Gang Wang
    Jin-Hua Fan
    Zhen-Yong Hu
    [J]. Analysis and Mathematical Physics, 2022, 12
  • [6] On close-to-convex harmonic mappings
    Bshouty, D.
    Joshi, S. S.
    Joshi, S. B.
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2013, 58 (09) : 1195 - 1199
  • [7] Geometric Properties of Certain Subclass of Close-to-Convex Harmonic Mappings
    Gochhayat, Priyabrat
    Mahata, Sima
    [J]. VIETNAM JOURNAL OF MATHEMATICS, 2024, 52 (01) : 175 - 195
  • [8] Properties and Characteristics of Certain Subclass of Close-to-Convex Harmonic Mappings
    Jiong SHI
    Zhigang WANG
    Xiaoyuan WANG
    [J]. Journal of Mathematical Research with Applications., 2024, 44 (05) - 658
  • [9] Geometric Properties of Certain Subclass of Close-to-Convex Harmonic Mappings
    Priyabrat Gochhayat
    Sima Mahata
    [J]. Vietnam Journal of Mathematics, 2024, 52 : 175 - 195
  • [10] On a subclass of close-to-convex harmonic mappings
    Sun, Yong
    Jiang, Yue-Ping
    Rasila, Antti
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2016, 61 (12) : 1627 - 1643