On a class of toda chains

被引:0
|
作者
V. E. Adler
A. B. Shabat
机构
[1] Russian Academy of Sciences,Institute of Mathematics, Ufa Scientific Center
[2] Russian Academy of Sciences,Landau Institute for Theoretical Physics
来源
关键词
Compatibility Condition; Nondegeneracy Condition; Toda Chain; Toda System; Integrable Generalization;
D O I
暂无
中图分类号
学科分类号
摘要
The main result of this paper is a list of integrable generalizations of the classical and relativistic Toda chains. This list includes three new types in addition to the well-known chains. Each of them defines a Bäcklund transformation for an NSE-type system. The classification is carried out with the help of a simple symmetry test.
引用
收藏
页码:647 / 657
页数:10
相关论文
共 50 条
  • [1] On a class of Toda chains
    Adler, VE
    Shabat, AB
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 1997, 111 (03) : 647 - 657
  • [2] Geometric constructions of Toda and periodic Toda chains
    Guo, MZ
    Liu, XF
    Qian, M
    Wan, BL
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 1997, 28 (03) : 289 - 294
  • [3] SOLUTION OF INFINITE TODA CHAINS
    GEKHTMAN, MI
    [J]. FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1991, 25 (03) : 230 - 232
  • [4] Reductions of the Volterra and Toda chains
    A. K. Svinin
    [J]. Theoretical and Mathematical Physics, 2000, 124 : 1211 - 1216
  • [5] Toda chains in the Jacobi method
    Tsiganov, AV
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2004, 139 (02) : 636 - 653
  • [6] Toda Chains in the Jacobi Method
    A. V. Tsiganov
    [J]. Theoretical and Mathematical Physics, 2004, 139 : 636 - 653
  • [7] QUANTUM TODA CHAINS INTERTWINED
    Gerasimov, A.
    Lebedev, D.
    Oblezin, S.
    [J]. ST PETERSBURG MATHEMATICAL JOURNAL, 2011, 22 (03) : 411 - 435
  • [8] Reductions of the Volterra and Toda chains
    Svinin, AK
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2000, 124 (03) : 1211 - 1216
  • [9] GENERATION OF A QUANTUM INTEGRABLE CLASS OF DISCRETE-TIME OR RELATIVISTIC PERIODIC TODA CHAINS
    KUNDU, A
    [J]. PHYSICS LETTERS A, 1994, 190 (01) : 79 - 84
  • [10] CLUSTER TODA CHAINS AND NEKRASOV FUNCTIONS
    Bershtein, M. A.
    Gavrylenko, P. G.
    Marshakov, A. V.
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2019, 198 (02) : 157 - 188