Bernstein Fractal Trigonometric Approximation

被引:0
|
作者
N. Vijender
机构
[1] VIT University Chennai,Mathematics Division, School of Advanced Sciences
来源
关键词
-Fractal functions; Bernstein polynomials; Fractal approximation; Convergence; Fractal trigonometric approximation; Fractal Fourier series; 30E10; 28A80; 41A30; 41A17; 65D017;
D O I
暂无
中图分类号
学科分类号
摘要
Fractal interpolation and approximation received a lot of attention in the last thirty years. The main aim of the current article is to study a fractal trigonometric approximants which converge to the given continuous function even if the magnitude of the scaling factors does not approach zero. In this paper, we first introduce a new class of fractal approximants, namely, Bernstein α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha $\end{document}-fractal functions using the theory of fractal approximation and Bernstein polynomial. Using the proposed class of fractal approximants and imposing no condition on corresponding scaling factors, we establish that the set of Bernstein α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha $\end{document}-fractal trigonometric functions is fundamental in the space of continuous periodic functions. Fractal version of Gauss formula of trigonometric interpolation is obtained by means of Bernstein trigonometric fractal polynomials. We study the Bernstein fractal Fourier series of a continuous periodic function f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f$\end{document} defined on [−l,l]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$[-l,l]$\end{document}. The Bernstein fractal Fourier series converges to f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f$\end{document} even if the magnitude of the scaling factors does not approach zero. Existence of the Cr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{C}^{r}$\end{document}-Bernstein fractal functions is investigated, and Bernstein cubic spline fractal interpolation functions are proposed based on the theory of Cr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{C}^{r}$\end{document}-Bernstein fractal functions.
引用
收藏
页码:11 / 27
页数:16
相关论文
共 50 条