Divergence points with fast growth orders of the partial quotients in continued fractions

被引:0
|
作者
B. Wang
J. Wu
机构
[1] Huazhong University of Science and Technology,Department of Mathematics
来源
Acta Mathematica Hungarica | 2009年 / 125卷
关键词
continued fractions; divergence point; Hausdorff dimension; 11A55; 28A80;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with the divergence points with fast growth orders of the partial quotients in continued fractions. Let S be a nonempty interval. We are interested in the size of the set of divergence points \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ E_\varphi (S) = \left\{ {x \in [0,1):{\rm A}\left( {\frac{1} {{\varphi (n)}}\sum\limits_{k = 1}^n {\log a_k (x)} } \right)_{n = 1}^\infty = S} \right\}, $$\end{document} where A denotes the collection of accumulation points of a sequence and φ: ℕ → ℕ with φ(n)/n → ∞ as n → ∞. Mainly, it is shown, in the case φ being polynomial or exponential function, that the Hausdorff dimension of Eφ(S) is a constant. Examples are also given to indicate that the above results cannot be expected for the general case.
引用
收藏
页码:261 / 274
页数:13
相关论文
共 50 条