Singular Schrödinger Operators as Limits Point Interaction Hamiltonians

被引:0
|
作者
J. F. Brasche
R. Figari
A. Teta
机构
[1] Universität Bielefeld,Fakultät für Mathematik
[2] Dipartimento di Fisica,Dipartimento di Matematica
[3] Mostra d'Oltemare,undefined
[4] Università di Roma,undefined
[5] Plazzala Aldo Moro,undefined
来源
Potential Analysis | 1998年 / 8卷
关键词
Point interaction; generalized Schrödinger operator; resolvent convergence; Monte-Carlo-methods;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we give results on the approximation of (generalized) Schrödinger operators of the form - ▵ + µ for some finite Radon measure µ on Rd. For d = 1 we shall show that weak convergence of measures µn to µ implies norm resolvent convergence of the operators -▵ + µn to -▵ + µ. In particular Schrödinger operators of the form - ▵ + µ for some finite Radon measure µ can be regularized or approximated by Hamiltonians describing point interactions. For d = 3 we shall show that a fairly large class of singular interactions can be regarded as limit of point interactions.
引用
收藏
页码:163 / 178
页数:15
相关论文
共 50 条