Let f, g and h be three distinct primitive holomorphic cusp forms of even integral weights k1, k2 and k3 for the full modular group Γ = SL(2, ℤ), respectively, and let λf(n), λg(n) and λh(n) denote the nth normalized Fourier coefficients of f, g and h, respectively. We consider the cancellations of sums related to arithmetic functions λg(n), λh(n) twisted by λf(n) and establish the following results: ∑n≼xλf(n)λg(n)iλh(n)j≪f,g,h,εx1−1/2i+j+ε\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\sum\limits_{n \leqslant x} {{\lambda _f}\left( n \right)} {\lambda _g}{\left( n \right)^i}{\lambda _h}{\left( n \right)^j}{ \ll _{f,g,h,\varepsilon }}{x^{1 - 1/{2^{i + j}} + \varepsilon }}$$\end{document} for any ε > 0, where 1 ≼ i ≼ 2, j ≼ 5 are any fixed positive integers.