Numerical solution and structural analysis of two-dimensional integral-algebraic equations

被引:0
|
作者
S. Pishbin
机构
[1] Urmia University,Department of Mathematics, Faculty of Sciences
来源
Numerical Algorithms | 2016年 / 73卷
关键词
Two-dimensional integral-algebraic equations; -smoothing Volterra operator; Orthogonal polynomial collocation methods; Numerical treatment; Error analysis; 65R20; 45F15; 45D05;
D O I
暂无
中图分类号
学科分类号
摘要
The υ-smoothing property of a one-dimensional Volterra integral operator and some projectors (Liang and Brumer, SIAM J. Numer. Anal. 51, 2238–2259 (2013)) are extended for two-dimensional integral-algebraic equations (TIAEs). Using these concepts, we decompose the given general TIAEs into mixed systems of two-dimensional Volterra integral equations (TVIEs) consisting of second- and first-kind TVIEs. Numerical technique based on the Chebyshev polynomial collocation methods is presented for the solution of the mixed TVIE system. Global convergence results are established and the performance of the numerical scheme is illustrated by means of some test problems.
引用
收藏
页码:305 / 322
页数:17
相关论文
共 50 条
  • [2] Numerical Solution of Two-Dimensional Integral-Algebraic Systems Using Legendre Functions
    Nemati, S.
    Lima, P.
    Ordokhani, Y.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 : 246 - 249
  • [3] On an Algorithm for the Numerical Solution of Integral-Algebraic Equations
    M. V. Bulatov
    Lobachevskii Journal of Mathematics, 2023, 44 : 542 - 547
  • [4] On an Algorithm for the Numerical Solution of Integral-Algebraic Equations
    Bulatov, M. V.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (02) : 542 - 547
  • [5] NUMERICAL SOLUTION OF A VOLTERRA INTEGRAL-ALGEBRAIC EQUATIONS
    Babakhani, Azizollah
    PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON CONTROL AND OPTIMIZATION WITH INDUSTRIAL APPLICATIONS, VOL I, 2018, : 119 - 121
  • [6] Numerical solution of integral-algebraic equations for multistep methods
    Budnikova, O. S.
    Bulatov, M. V.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2012, 52 (05) : 691 - 701
  • [7] Numerical solution of integral-algebraic equations for multistep methods
    O. S. Budnikova
    M. V. Bulatov
    Computational Mathematics and Mathematical Physics, 2012, 52 : 691 - 701
  • [8] On an algorithm for the numerical solution of quasilinear integral-algebraic equations
    Bulatov, Mikhail
    Indutskaya, Tatiana
    Solovarova, Liubov
    APPLIED NUMERICAL MATHEMATICS, 2025, 208 : 348 - 355
  • [9] On Stable Algorithms for Numerical Solution of Integral-Algebraic Equations
    Bulatov, M. V.
    Budnikova, O. S.
    BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2013, 6 (04): : 5 - 14
  • [10] Two-dimensional integral-algebraic systems: Analysis and computational methods
    Bulatov, M. V.
    Lima, P. M.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 236 (02) : 132 - 140