Painlevé analysis, auto-Bäcklund transformation and analytic solutions of a (2+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$+$$\end{document}1)-dimensional generalized Burgers system with the variable coefficients in a fluid

被引:0
|
作者
Tian-Yu Zhou
Bo Tian
Yu- Qi Chen
Yuan Shen
机构
[1] Beijing University of Posts and Telecommunications,State Key Laboratory of Information Photonics and Optical Communications, and School of Science
关键词
Fluid; (2; 1)-dimensional generalized Burgers system with variable coefficients; Painlevé analysis; Bäcklund transformation; Multiple kink solutions; Breather solutions; Hybrid solutions; Half-periodic kink solutions;
D O I
10.1007/s11071-022-07211-1
中图分类号
学科分类号
摘要
Burgers-type equations are used to describe certain phenomena in gas dynamics, traffic flow, plasma astrophysics and ocean dynamics. In this paper, a (2+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$+$$\end{document}1)-dimensional generalized Burgers system with the variable coefficients in a fluid is investigated. We obtain the Painlevé-integrable constraints of the system with respect to the variable coefficients. Based on the truncated Painlevé expansions, an auto-Bäcklund transformation is constructed, along with some soliton solutions. Via a truncated Painlevé expansions, certain multiple kink solutions are derived. Via a complex-conjugate transformation, some breather solutions, half-periodic kink solutions and hybrid solutions composed of the breathers and kink waves are seen.
引用
收藏
页码:2417 / 2428
页数:11
相关论文
共 50 条