Singular quasilinear elliptic equation;
Existence of positive solution;
Variational method;
Perturbation argument;
35J20;
35J25;
35J62;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Let Ω⊂RN\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Omega \subset \mathbb R^N$$\end{document} be a bounded domain with smooth boundary. Existence of a positive solution to the quasilinear equation -diva(x)+|u|θ∇u+θ2|u|θ-2u|∇u|2=|u|p-2uinΩ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\begin{aligned} -\text {div}\left[ \left( a(x)+|u|^\theta \right) \nabla u\right] +\frac{\theta }{2}|u|^{\theta -2}u|\nabla u|^2=|u|^{p-2}u \quad \text {in}\ \Omega \end{aligned}$$\end{document}with zero Dirichlet boundary condition is proved. Here θ>0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\theta >0$$\end{document} and a(x) is a measurable function satisfying 0<α≤a(x)≤β\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$0<\alpha \le a(x)\le \beta $$\end{document}. The equation involves singularity when 0<θ≤1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$0<\theta \le 1$$\end{document}. As a main novelty with respect to corresponding results in the literature, we only assume θ+2<p<2∗2(θ+2)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\theta +2<p<\frac{2^*}{2}(\theta +2)$$\end{document}. The proof relies on a perturbation method and a critical point theory for E-differentiable functionals.
机构:
Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R ChinaCapital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
Jing, Yongtao
Liu, Zhaoli
论文数: 0引用数: 0
h-index: 0
机构:
Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R ChinaCapital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
Liu, Zhaoli
Wang, Zhi-Qiang
论文数: 0引用数: 0
h-index: 0
机构:
Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
Utah State Univ, Dept Math & Stat, Logan, UT 84322 USACapital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
机构:
Univ Pau & Pays Adour, LMAP UMR 5142, Bat IPRA,Ave Univ, F-64013 Pau, FranceUniv Pau & Pays Adour, LMAP UMR 5142, Bat IPRA,Ave Univ, F-64013 Pau, France
Badra, Mehdi
Bal, Kaushik
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pau & Pays Adour, LMAP UMR 5142, Bat IPRA,Ave Univ, F-64013 Pau, FranceUniv Pau & Pays Adour, LMAP UMR 5142, Bat IPRA,Ave Univ, F-64013 Pau, France
Bal, Kaushik
Giacomoni, Jacques
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pau & Pays Adour, LMAP UMR 5142, Bat IPRA,Ave Univ, F-64013 Pau, FranceUniv Pau & Pays Adour, LMAP UMR 5142, Bat IPRA,Ave Univ, F-64013 Pau, France
机构:
Univ Torino, Dipartimento Matemat Giuseppe Peano, Via Carlo Alberto 10, I-10123 Turin, ItalyUniv Torino, Dipartimento Matemat Giuseppe Peano, Via Carlo Alberto 10, I-10123 Turin, Italy
Badiale, Marino
Guida, Michela
论文数: 0引用数: 0
h-index: 0
机构:
Univ Torino, Dipartimento Matemat Giuseppe Peano, Via Carlo Alberto 10, I-10123 Turin, ItalyUniv Torino, Dipartimento Matemat Giuseppe Peano, Via Carlo Alberto 10, I-10123 Turin, Italy
Guida, Michela
Rolando, Sergio
论文数: 0引用数: 0
h-index: 0
机构:
Univ Milano Bicocca, Dipartimento Matemat & Applicaz, Via Roberto Cozzi 53, I-20125 Milan, ItalyUniv Torino, Dipartimento Matemat Giuseppe Peano, Via Carlo Alberto 10, I-10123 Turin, Italy