Existence results for a singular quasilinear elliptic equation

被引:0
|
作者
Yongtao Jing
Zhaoli Liu
Zhi-Qiang Wang
机构
[1] Capital Normal University,School of Mathematical Sciences
[2] Center for Applied Mathematics,Department of Mathematics and Statistics
[3] Tianjin University,undefined
[4] Utah State University,undefined
关键词
Singular quasilinear elliptic equation; Existence of positive solution; Variational method; Perturbation argument; 35J20; 35J25; 35J62;
D O I
暂无
中图分类号
学科分类号
摘要
Let Ω⊂RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset \mathbb R^N$$\end{document} be a bounded domain with smooth boundary. Existence of a positive solution to the quasilinear equation -diva(x)+|u|θ∇u+θ2|u|θ-2u|∇u|2=|u|p-2uinΩ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} -\text {div}\left[ \left( a(x)+|u|^\theta \right) \nabla u\right] +\frac{\theta }{2}|u|^{\theta -2}u|\nabla u|^2=|u|^{p-2}u \quad \text {in}\ \Omega \end{aligned}$$\end{document}with zero Dirichlet boundary condition is proved. Here θ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta >0$$\end{document} and a(x) is a measurable function satisfying 0<α≤a(x)≤β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\alpha \le a(x)\le \beta $$\end{document}. The equation involves singularity when 0<θ≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\theta \le 1$$\end{document}. As a main novelty with respect to corresponding results in the literature, we only assume θ+2<p<2∗2(θ+2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta +2<p<\frac{2^*}{2}(\theta +2)$$\end{document}. The proof relies on a perturbation method and a critical point theory for E-differentiable functionals.
引用
下载
收藏
页码:67 / 84
页数:17
相关论文
共 50 条