Tikhonov–Fenichel Reduction for Parameterized Critical Manifolds with Applications to Chemical Reaction Networks

被引:0
|
作者
Elisenda Feliu
Niclas Kruff
Sebastian Walcher
机构
[1] University of Copenhagen,Department of Mathematical Sciences
[2] RWTH Aachen,Lehrstuhl A für Mathematik
来源
关键词
Singular perturbation; Critical manifold; Chemical reaction network; Complex balancing; 92C45; 34E15; 80A30; 13P10;
D O I
暂无
中图分类号
学科分类号
摘要
We derive a reduction formula for singularly perturbed ordinary differential equations (in the sense of Tikhonov and Fenichel) with a known parameterization of the critical manifold. No a priori assumptions concerning separation of slow and fast variables are made, or necessary. We apply the theoretical results to chemical reaction networks with mass action kinetics admitting slow and fast reactions. For some relevant classes of such systems, there exist canonical parameterizations of the variety of stationary points; hence, the theory is applicable in a natural manner. In particular, we obtain a closed form expression for the reduced system when the fast subsystem admits complex-balanced steady states.
引用
收藏
页码:1355 / 1380
页数:25
相关论文
共 36 条
  • [1] Tikhonov-Fenichel Reduction for Parameterized Critical Manifolds with Applications to Chemical Reaction Networks
    Feliu, Elisenda
    Kruff, Niclas
    Walcher, Sebastian
    JOURNAL OF NONLINEAR SCIENCE, 2020, 30 (04) : 1355 - 1380
  • [2] Reduction of chemical reaction networks with distributed delays
    Leier, A.
    Marquez-Lago, T. T.
    Barrio, M.
    FEBS JOURNAL, 2013, 280 : 564 - 564
  • [3] Delays in Model Reduction of Chemical Reaction Networks
    Liptak, Gyorgy
    Hangos, Katalin M.
    IFAC PAPERSONLINE, 2018, 51 (14): : 100 - 105
  • [4] Reduction of chemical reaction networks through delay distributions
    Barrio, Manuel
    Leier, Andre
    Marquez-Lago, Tatiana T.
    JOURNAL OF CHEMICAL PHYSICS, 2013, 138 (10):
  • [5] Structural reduction of chemical reaction networks based on topology
    Hirono, Yuji
    Okada, Takashi
    Miyazaki, Hiroyasu
    Hidaka, Yoshimasa
    PHYSICAL REVIEW RESEARCH, 2021, 3 (04):
  • [6] Reduction of Chemical Reaction Networks with Approximate Conservation Laws
    Desoeuvres, Aurelien
    Iosif, Alexandru
    Lueders, Christoph
    Radulescu, Ovidiu
    Rahkooy, Hamid
    Seiss, Matthias
    Sturm, Thomas
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2024, 23 (01): : 256 - 296
  • [7] Optimality-Preserving Reduction of Chemical Reaction Networks
    Larsen, Kim G.
    Toller, Daniele
    Tribastone, Mirco
    Tschaikowski, Max
    Vandin, Andrea
    LEVERAGING APPLICATIONS OF FORMAL METHODS, VERIFICATION AND VALIDATION: RIGOROUS ENGINEERING OF COLLECTIVE ADAPTIVE SYSTEMS, PT II, ISOLA 2024, 2025, 15220 : 13 - 32
  • [8] Critical Parameters for Singular Perturbation Reductions of Chemical Reaction Networks
    Elisenda Feliu
    Sebastian Walcher
    Carsten Wiuf
    Journal of Nonlinear Science, 2022, 32
  • [9] Critical Parameters for Singular Perturbation Reductions of Chemical Reaction Networks
    Feliu, Elisenda
    Walcher, Sebastian
    Wiuf, Carsten
    JOURNAL OF NONLINEAR SCIENCE, 2022, 32 (06)
  • [10] Reduction of chemical reaction networks using quasi-integrals
    Straube, R
    Flockerzi, D
    Müller, SC
    Hauser, MJB
    JOURNAL OF PHYSICAL CHEMISTRY A, 2005, 109 (03): : 441 - 450