Reconstruction of the Space-dependent Source from Partial Neumann Data for Slow Diffusion System

被引:0
|
作者
Chun-long Sun
Ji-jun Liu
机构
[1] Southeast University,School of Mathematics, S.T. Yau Center of Southeast University
关键词
time-fractional diffusion; inverse source problem; variational method; Lipschitz stability; 65M32; 35R30; 26A33;
D O I
暂无
中图分类号
学科分类号
摘要
Consider a linear inverse problem of determining the space-dependent source term in a diffusion equation with time fractional order derivative from the flux measurement specified in partial boundary. Based on the analysis on the forward problem and the adjoint problem with inhomogeneous boundary condition, a variational identity connecting the inversion input data with the unknown source function is established. The uniqueness and the conditional stability for the inverse problem are proven by weak unique continuation and the variational identity in some norm. The inversion scheme minimizing the regularizing cost functional is implemented by using conjugate gradient method, with numerical examples showing the validity of the proposed reconstruction scheme.
引用
收藏
页码:166 / 182
页数:16
相关论文
共 50 条
  • [1] Reconstruction of the Space-dependent Source from Partial Neumann Data for Slow Diffusion System
    Sun, Chun-long
    Liu, Ji-jun
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2020, 36 (01): : 166 - 182
  • [2] Reconstruction of the Space-dependent Source from Partial Neumann Data for Slow Diffusion System
    Chun-long SUN
    Ji-jun LIU
    ActaMathematicaeApplicataeSinica, 2020, 36 (01) : 166 - 182
  • [3] Reconstruction of a space-dependent source in the inexact order time-fractional diffusion equation
    Dang Duc Trong
    Dinh Nguyen Duy Hai
    Nguyen Dang Minh
    CHAOS SOLITONS & FRACTALS, 2020, 134
  • [4] NUMERICAL RECONSTRUCTION OF A SPACE-DEPENDENT SOURCE TERM FOR MULTIDIMENSIONAL SPACE-TIME FRACTIONAL DIFFUSION EQUATIONS
    Sidi, H. ould
    Zaky, M. A.
    EL Waled, K.
    Akgul, A.
    Hendy, A. S.
    ROMANIAN REPORTS IN PHYSICS, 2023, 75 (04)
  • [5] Simultaneous identification and reconstruction of the space-dependent reaction coefficient and source term
    Cao, Kai
    Lesnic, Daniel
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2021, 29 (06): : 867 - 894
  • [6] Identification of a multi-dimensional space-dependent heat source from boundary data
    Hussein, M. S.
    Lesnic, D.
    Johansson, B. T.
    Hazanee, A.
    APPLIED MATHEMATICAL MODELLING, 2018, 54 : 202 - 220
  • [7] Simultaneous determination for a space-dependent heat source and the initial data by the MFS
    Wei, T.
    Wang, J. C.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2012, 36 (12) : 1848 - 1855
  • [8] Cauchy problem and initial traces for fast diffusion equation with space-dependent source
    Shang, Haifeng
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2013, 64 (03): : 785 - 798
  • [9] Cauchy problem and initial traces for fast diffusion equation with space-dependent source
    Haifeng Shang
    Zeitschrift für angewandte Mathematik und Physik, 2013, 64 : 785 - 798
  • [10] Regularization techniques for estimating the space-dependent source in an n-dimensional linear parabolic equation using space-dependent noisy data
    Umbricht, Guillermo Federico
    Rubio, Diana
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 172 : 47 - 69