Let x = (xn)n⩾1 be a martingale on a noncommutative probability space (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal{M}$$\end{document}, τ) and (wn)n⩾1 a sequence of positive numbers such that \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$W_n = \sum\nolimits_{k = 1}^n {w_k \to \infty } $\end{document} as n → ∞. We prove that x = (xn)n⩾1 converges bilaterally almost uniformly (b.a.u.) if and only if the weighted average (σn(x))n⩾1 of x converges b.a.u. to the same limit under some condition, where σn(x) is given by \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\sigma _n (x) = \frac{1}
{{W_n }}\sum\limits_{k = 1}^n {w_k x_k } ,n = 1,2,...
$\end{document} Furthermore, we prove that x = (xn)n⩾1 converges in Lp(\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal{M}$$\end{document}) if and only if (σn(x))n⩾1 converges in Lp(\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal{M}$$\end{document}), where 1 ⩽ p < ∞. We also get a criterion of uniform integrability for a family in L1(\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal{M}$$\end{document}).