Development of Predictive Models in Patients with Epiphora Using Lacrimal Scintigraphy and Machine Learning

被引:0
|
作者
Yong-Jin Park
Ji Hoon Bae
Mu Heon Shin
Seung Hyup Hyun
Young Seok Cho
Yearn Seong Choe
Joon Young Choi
Kyung-Han Lee
Byung-Tae Kim
Seung Hwan Moon
机构
[1] Sungkyunkwan University School of Medicine,Departments of Nuclear Medicine, Samsung Medical Center
来源
关键词
Epiphora; Dacryocystography; Lacrimal scintigraphy; Machine learning; Deep learning; Convolutional neural network;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:125 / 135
页数:10
相关论文
共 50 条
  • [1] Development of Predictive Models in Patients with Epiphora Using Lacrimal Scintigraphy and Machine Learning
    Park, Yong-Jin
    Bae, Ji Hoon
    Shin, Mu Heon
    Hyun, Seung Hyup
    Cho, Young Seok
    Choe, Yearn Seong
    Choi, Joon Young
    Lee, Kyung-Han
    Kim, Byung-Tae
    Moon, Seung Hwan
    NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2019, 53 (02) : 125 - 135
  • [2] Lacrimal Scintigraphy and Dacryocystography in Patients with Epiphora
    Nuhoglu, Fadime
    Ozdemir, Fatma Esin
    Buyrukcu, Ayse Tekin
    Eltutar, Kadir
    JOURNAL OF ACADEMIC RESEARCH IN MEDICINE-JAREM, 2012, 2 (02): : 68 - 70
  • [3] Comparison of Dacryocystography and Lacrimal Scintigraphy in the Investigation of Epiphora in Patients With Patent but Nonfunctioning Lacrimal Systems
    Peter, Neena M.
    Pearson, Andrew R.
    OPHTHALMIC PLASTIC AND RECONSTRUCTIVE SURGERY, 2009, 25 (03): : 201 - 205
  • [4] Development and rigorous validation of antimalarial predictive models using machine learning approaches
    Danishuddin
    Madhukar, G.
    Malik, M. Z.
    Subbarao, N.
    SAR AND QSAR IN ENVIRONMENTAL RESEARCH, 2019, 30 (08) : 543 - 560
  • [5] Development of Predictive Models using Machine Learning Algorithms for Food Adulterants Bacteria Detection
    Amado, Timothy M.
    Burman, Ma Rica
    Chicote, Relamae F.
    Espenida, Sheila May C.
    Masangcay, Honeyleth L.
    Ventura, Camille H.
    Tolentino, Lean Karlo S.
    Padilla, Maria Victoria C.
    Madrigal, Gilfred Allen M.
    Enriquez, Lejan Alfred C.
    2019 IEEE 11TH INTERNATIONAL CONFERENCE ON HUMANOID, NANOTECHNOLOGY, INFORMATION TECHNOLOGY, COMMUNICATION AND CONTROL, ENVIRONMENT, AND MANAGEMENT (HNICEM), 2019,
  • [6] Development of predictive models for personalized, precision medicine in colorectal cancer using machine learning
    Hung, Man
    Hon, Shirley
    Gu, Yushan
    Bounsanga, Jerry
    Hon, Eric
    Hansen, Alec R.
    Nielson, Dominique
    Voss, Maren
    QUALITY OF LIFE RESEARCH, 2017, 26 (01) : 65 - 65
  • [7] Development of predictive models for density of hybrid nanofluids using different machine learning techniques
    Gupta, Amit Kumar
    Mathur, Priya
    Oyedeji, Mojeed Opeyemi
    Alade, Ibrahim Olanrewaju
    Qahtan, Talal F.
    Gupta, Sparsh
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART E-JOURNAL OF PROCESS MECHANICAL ENGINEERING, 2023, 237 (05) : 1722 - 1739
  • [8] Predictive models for diabetes mellitus using machine learning techniques
    Lai, Hang
    Huang, Huaxiong
    Keshavjee, Karim
    Guergachi, Aziz
    Gao, Xin
    BMC ENDOCRINE DISORDERS, 2019, 19 (01)
  • [9] A predictive study on HCV using automated machine learning models
    Değer, Serbun Ufuk
    Can, Hakan
    Computers in Biology and Medicine, 2025, 188
  • [10] Predictive models for diabetes mellitus using machine learning techniques
    Hang Lai
    Huaxiong Huang
    Karim Keshavjee
    Aziz Guergachi
    Xin Gao
    BMC Endocrine Disorders, 19