Real hypersurfaces of a complex space form

被引:0
|
作者
SHARIEF DESHMUKH
机构
[1] King Saud University,Department of Mathematics, College of Science
来源
关键词
Real hypersurfaces; mean curvature; Ricci curvature; shape operator; harmonic vector field;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we are interested in obtaining a condition under which a compact real hypersurface of a complex projective space CPn is a geodesic sphere. We also study the question as to whether the characteristic vector field of a real hypersurface of the complex projective space CPn is harmonic, and show that the answer is in negative.
引用
收藏
页码:629 / 634
页数:5
相关论文
共 50 条
  • [1] Real hypersurfaces of a complex space form
    Deshmukh, Sharief
    MONATSHEFTE FUR MATHEMATIK, 2012, 166 (01): : 93 - 106
  • [2] Real hypersurfaces of a complex space form
    Sharief Deshmukh
    Monatshefte für Mathematik, 2012, 166 : 93 - 106
  • [3] Real hypersurfaces of a complex space form
    Deshmukh, Sharief
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2012, 122 (04): : 629 - 634
  • [4] NOTES ON REAL HYPERSURFACES IN A COMPLEX SPACE FORM
    Cho, Jong Taek
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2015, 52 (01) : 335 - 344
  • [5] Characterizations of real hypersurfaces in a complex space form
    Kim, In-Bae
    Kim, Ki Hyun
    Sohn, Woon Ha
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2007, 50 (01): : 97 - 104
  • [6] Real hypersurfaces in a Euclidean complex space form
    Deshmukh, Sharief
    QUARTERLY JOURNAL OF MATHEMATICS, 2007, 58 : 313 - 317
  • [8] CR structures on real hypersurfaces of a complex space form
    Cho, JT
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1999, 54 (3-4): : 473 - 487
  • [9] Transversal symmetries on real hypersurfaces in a complex space form
    Cho, Jong Taek
    Kimura, Makoto
    HIROSHIMA MATHEMATICAL JOURNAL, 2013, 43 (02) : 223 - 238
  • [10] SOME RESULTS OF REAL HYPERSURFACES IN A COMPLEX SPACE FORM
    Kumara, H. Aruna
    Venkatesha, V.
    Naik, Devaraja Mallesha
    HOUSTON JOURNAL OF MATHEMATICS, 2021, 47 (03): : 599 - 612