Inequalities for lower order eigenvalues of second order elliptic operators in divergence form on Riemannian manifolds

被引:0
|
作者
He-Jun Sun
Da-Guang Chen
机构
[1] Nanjing University of Science and Technology,Department of Applied Mathematics
[2] Tsinghua University,Department of Mathematical Sciences
来源
Archiv der Mathematik | 2013年 / 101卷
关键词
35P15; 53C42; 58C40; Eigenvalue; Elliptic operator in divergence form; Riemannian manifold;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the Dirichlet eigenvalue problems of second order elliptic operators in divergence form on bounded domains of complete Riemannian manifolds. We discuss the cases of submanifolds immersed in a Euclidean space, Riemannian manifolds admitting spherical eigenmaps, and Riemannian manifolds which admit l functions fα:M⟶R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f_\alpha : M \longrightarrow \mathbb{R}}$$\end{document} such that 〈∇fα,∇fβ〉=δαβ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\langle \nabla f_\alpha, \nabla f_\beta \rangle = \delta_{\alpha \beta}}$$\end{document} and Δfα = 0, where ∇ is the gradient operator. Some inequalities for lower order eigenvalues of these problems are established. As applications of these results, we obtain some universal inequalities for lower order eigenvalues of the Dirichlet Laplacian problem. In particular, the universal inequality for eigenvalues of the Laplacian on a unit sphere is optimal.
引用
收藏
页码:381 / 393
页数:12
相关论文
共 50 条